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Spectral Analysis of Signals 
 

A signal under study in a communication system is generally expressed as a function of time or as a 

function of frequency. When the signal is expressed as a function of time, it gives us an idea of how that 

instantaneous amplitude of the signal is varying with respect to time. Whereas when the same signal is 

expressed as function of frequency, it gives us an insight of what are the contributions of different 

frequencies that compose up that particular signal. Basically a signal can be expressed both in time 

domain and the frequency domain. There are various mathematical tools that aid us to get the frequency 

domain expression of a signal from the time domain expression and vice-versa. FourierSeries is used 

when the signal in study is a periodic one, whereas Fourier Transform may be used for both periodic as 

well as non-periodic signals. 

Fourier Series 

 
Let the signal x(t) be a periodic signal with period T0. The Fourier series of a signal can be obtained, if 

the following conditions known as the Dirichlet conditions are satisfied: 

1. x(t) must be a single valued function of ‘t’. 

 

2. x(t) is absolutely integrable over its domain, i.e. 
 



 x(t) dt  0 




3. The number of maxima and minima of x(t) must be finite in its domain. 

 

4. The number of discontinuities of x(t) must be finite in its domain. 

 

A periodic function of time, say x(t) having a fundamental period T0 can be represented as an infinite 

sum of sinusoidal waveforms, the summation being called as the Fourier series expansion of the signal. 
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Where A0 is the average value of v(t) given by: 
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And the coefficients An and Bn are given by 
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Alternate form of Fourier Series is 
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The Fourier series hence expresses a periodic signal as an infinite summation of harmonics of 

 
fundamental frequency 

f   
1
 

T0 

 
. The coefficients 

 
Cn 

are called spectral amplitudes i.e. 

 
Cn 

is the 

amplitude of the spectral component C cos 
 2 nt 

 
 

at frequency nf0. This form gives one sided 
n  n 

   T0 

spectral representation of a signal as shown in1st plot of Figure 1. 

 

 
Exponential Form of Fourier Series 

 

This form of Fourier series expansion can be expressed as : 
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The spectral coefficients Vnand V-n have the property that they are complex conjugates of each other 

V V 
* 

. This form gives two sided spectral representation of a signal as shown in 2nd  plot of Figure- 
n n 

1. The coefficients Vn can be related to Cn as : 
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Figure 1 One sided and corresponding two sided spectral amplitude plot 
 

The Sampling Function 

 
The sampling function denoted as Sa(x) is defined as: 

Sinx
Sax 

x 
 

And a similar function Sinc(x) is defined as : 

Sinx
Sinc x  

x
 

 

The Sa(x) is symmetrical about x=0, and is maximum at this point Sa(x)=1. It oscillates with an 

amplitude that decreases with increasing x. It crosses zero at equal intervals on x at every x  n , 
where n is an non-zero integer. 

 

Figure 2 Plot of Sinc(f) 





Fourier Transform 

 

The Fourier transform is the extension of the Fourier series to the general class of signals (periodic and 

nonperiodic). Here, as in Fourier series, the signals are expressed in terms of complex exponentials of 

various frequencies, but these frequencies are not discrete. Hence, in this case, the signal has a 

continuous spectrum as opposed to a discrete spectrum. Fourier Transform of a signal x(t) can be 

expressed as: 
 



F[x(t)]  X(f)   x(t) e j2 ft dt 




x(t)  X(f) represents a Fourier Transform pair 
 

The time-domain signal x(t) can be obtained from its frequency domain signal X(f) by Fourier 

inverse defined as: 
 



x(t)  F1  X (f)   X (f)e j2 ftdf 


When frequency is defined in terms of angular frequency  ,then Fourier transform relation 

can be expressed as: 
 



F[x(t)]  X()   x(t) e jt dt 




and 
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x(t)  F 1  X ()  X ()e jtd
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Properties of Fourier Transform 

 

Let there be signals x(t) and y(t) ,with their Fourier transform pairs:  
 

x(t)  X(f) 

y(t)  Y(f) then, 
 

1. Linearity Property 

ax(t)  by(t)  aX(f)  bY(f) , where a and b are the constants 

 
2. Duality Property 

X(t)  x( f )or 

X(t)  2 X() 

 

3. Time Shift Property 

x(t t0 ) e j2 ft0   X(f) 
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4. Time Scaling Property 

x(at) 
1 

X 
 f 

 

5. Convolution Property: If convolution operation between two signals is defined as: 


x(t)  y(t)   x  x t   d , then 


x(t)  y(t)  X(f) Y(f) 

6. Modulation Property 

ej2 f0t x(t) X(ff ) 

7. Parseval’s Property 
 

 x(t) y(t) dt   X (f) Y(f)df 
 

8. Autocorrelation Property: If the time autocorrelation of signal x(t) is expressed as: 


Rx ( )   x(t) x(t )dt 


,then 

 
2 

Rx ( )  X (f) 

9. Differentiation Property: 
d 

x (t) 
dt 

j 2 fX (f) 

 

Response of a linear system 

 

The reason what makes Trigonometric Fourier Series expansion so important is the unique 

characteristic of the sinusoidal waveform that such a signal always represent a particular frequency. 

When any linear system is excited by a sinusoidal signal, the response also is a sinusoidal signal of 

same frequency. In other words, a sinusoidal waveform preserves its wave-shape throughout a linear 

system. Hence the response-excitation relationship for a linear system can be characterised by, how the 

response amplitude is related to the excitation amplitude (amplitude ratio) and how the response phase 

is related to the excitation phase (phase difference) for a particular frequency. Let the input to a linear 

system be : 

v t,    V e jnt
 

i n n 

 

 

Then the filter output is related to this input by the Transfer Function (characteristic of the Linear 
Filter):  H n    H    e ,  such that the filter output is given as 

 j n 



vo t, n   Vn H   e 
j nt  j n 

n 





Normalised Power 

 

While discussing communication systems, rather than the absolute power we are interested in another 

quantity called Normalised Mean Power. It is an average power normalised across a 1 ohm resistor, 

averaged over a single time-period for a periodic signal. In general irrespective of the fact, whether it is 

a periodic or non-periodic signal, average normalised power of a signal v(t) is expressed as : 
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Energy of signal 

 

For a continuous-time signal, the energy of the signal is expressed as: 
 



E   x
2(t)dt 




A signal is called an Energy Signal if 
 

0  E  

P  0 
 

A signal is called Power Signal if 
 

0  P  

E    

 

Normalised Power of a Fourier Expansion 

 

If a periodic signal can be expressed as a Fourier Series expansion as:  

vt  C0 C1 cos2 f0t C2 cos4 f0t ... 
 

Then, its normalised average power is given by : 
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Integral of the cross-product terms become zero, since the integral of a product of orthogonal signals 

over period is zero. Hence the power expression becomes: 
 

2 C 2 C 2 

P  C0 
 1  2 ... 

2 2 
 

By generalisation, normalised average power expression for entire Fourier Series becomes:  



 

P  VV 
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P  C0  n ... 

n1 2 
 

In terms of trigonometric Fourier coefficients An‘s, Bn‘s, the power expression can be written as: 
 

P  A 2 A 2 B 2 
0  n  n 

n1  n1 

 

In terms of complex exponential Fourier series coefficients Vn’s, the power expressions becomes: 
 


* 

n n 

n



Energy Spectral Density(ESD) 

 

It can be proved that energy E of a signal x(t) is given by : 
 

  2 

E   x 2 (t)dt   X (f) df  Parseval’s Theorem for energy signals 

 





So, E    (f)df , where  (f)  X (f) 
2 
 Energy Spectral Density 





The above expression says that  (f) integrated over all of the frequencies, gives the total energy of the 

signal. Hence Energy Spectral Density (ESD) quantifies the energy contribution from every frequency 

component in the signal, and is a function of frequency. 

Power Spectral Density(PSD) 

 

It can be proved that the average normalised power P of a signal x(t),such that 

 

 
x (t) is a truncated and 

 
x(t); 

  
 t  

 


periodically repeated version of x(t) such that x (t)  

 2 2 


 is given by : 
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X t  dt  Parseval’s Theorem for power signals 
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  X (f) 2 

So,  P    S(f)df  , where  S(f)   lim_.  

         
 Power Spectral Density 

 




The above expression says that S(f)integrated over all of the frequencies, gives the total normalised 

power of the signal. Hence Power Spectral Density (PSD) quantifies the power contribution from every 

frequency component in the signal, and is a function of frequency. 



Expansion in Orthogonal Functions 

 

Let there be a set of functions g1 (x), g 2 (x), g 3 (x),..., g n (x) , defined over the interval x1  x  x2 
and such 

that any two functions of the set have a special relation: 

 
x2 

 gi (x)g j (x) dx  0 . 
x1 

 

The set of functions showing the above property are said to be an orthogonal set of functions in the 

interval x1  x  x2 
. We can then write a function f (x) in the same interval x1  x  x2 

, as a linear 

sum of such g n (x) ’s as: 

f (x)  C
1 
g

1 
(x)  C 

2 
g 

2 
(x)  C 

3 
g 

3 
(x)  ...  C

n 
g 

n 
(x) , where Cn’s are the numerical coefficients 

The numerical value of any coefficient Cn can be found out as: 

x2 

 f (x) gn (x)dx 

C   
 x1  

n x2 

 gn

2 (x) dx 
x1 

 

In a special case when the functions g n (x) in the set are chosen such that 
x2 

 g 
n 

2 (x) dx =1, then such a 
x1 

set is called as a set of orthonormal functions, that is the functions are orthogonal to each other and each 

one is a normalised function too. 
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Amplitude Modulation Systems 
 

In communication systems, we often need to design and analyse systems in which many independent 

message can be transmitted simultaneously through the same physical transmission channel. It is 

possible with a technique called frequency division multiplexing, in which each message is translated in 

frequency to occupy a different range of spectrum. This involves an auxiliary signal called carrier 

which determines the amount of frequency translation. It requires modulation, in which either the 

amplitude, frequency or phase of the carrier signal is varied as according to the instantaneous value of 

the message signal. The resulting signal then is called a modulated signal. When the amplitude of the 

carrier is changed as according to the instantaneous value of the message/baseband signal, it results in 

Amplitude Modulation. The systems implementing such modulation are called as Amplitude modulation 

systems. 

Frequency Translation 

 

Frequency translation involves translating the signal from one region in frequency to another region. A 

signal band-limited in frequency lying in the frequencies from f1 to f2, after frequency translation can be 

translated to a new range of frequencies from f ’ to f ’. The information in the original message signal at 

baseband frequencies can be recovered back even from the frequency-translated signal. The 

advantagesof frequency translation are as follows: 

1. Frequency Multiplexing: In a case when there are more than one sources which produce band- 

limited signals that lie in the same frequency band. Such signals if transmitted as such 

simultaneously through a transmission channel, they will interfere with each other and cannot 

be recovered back at the intended receiver. But if each signal is translated in frequency such  

that they encompass different ranges of frequencies, not interfering with other signal spectrums, 

then each signal can be separated back at the receiver with the use of proper filters. The output 

of filters then can be suitably processed to get back the original message signal. 

2. Practicability of antenna: In a wireless medium, antennas are used to radiate and to receive the 

signals. The antenna operates effectively, only when the dimension of the antenna is of the 

order of magnitude of the wavelength of the signal concerned. At baseband low frequencies, 

wavelength is large and so is the dimension of antenna required is impracticable. By frequency 

translation, the signal can be shifted in frequency to higher range of frequencies. Hence the 

corresponding wavelength is small to the extent that the dimension of antenna required is quite 

small and practical. 

3. Narrow banding: For a band-limited signal, an antenna dimension suitable for use at one end of 

the frequency range may fall too short or too large for use at another end of the frequency 

range. This happens when the ratio of the highest to lowest frequency contained in the signal is 

large (wideband signal). This ratio can be reduced to close around one by translating the signal 

to a higher frequency range, the resulting signal being called as a narrow-banded signal. 

Narrowband signal works effectively well with the same antenna dimension for both the higher 

end frequency as well as lower end frequency of the band-limited signal. 

4. Common Processing: In order to process different signals occupying different spectral ranges 

but similar in general character, it may always be necessary to adjust the frequency range of 

operation of the apparatus. But this may be avoided, by keeping the frequency range of 

operation of the apparatus constant, and instead every time the signal of interest beingtranslated 

down to the operating frequency range of the apparatus. 



Amplitude Modulation Types: 
 

1. Double-sideband with carrier (DSB+C) 

2. Double-sideband suppressed carrier (DSB-SC) 

3. Single-sideband suppressed carrier (SSB-SC) 

4. Vestigial sideband (VSB) 

 
 

Double-sideband with carrier (DSB+C) 

 

Let there be a sinusoidal carrier signal c (t)  ACos( 2 f 
c 

t) , of frequency fc . With the concept of 

amplitude modulation, the instantaneous amplitude of the carrier signal will be modulated (changed) 

proportionally according to the instantaneous amplitude of the baseband or modulating signal x(t). So 

the expression for the Amplitude Modulated (AM) wave becomes: 

s(t) A x(t)Cos(2 fct)  E(t)Cos(2 fct) 

E (t)  A x(t) 
 

The time varying amplitude E(t) of the AM wave is called as the envelope of the AM wave. The 

envelope of the AM wave has the same shape as the message signal or baseband signal. 
 

Figure 3 Amplitude modulation time-domain plot 

 

Modulation Index (ma): It is defined as the measure of extent of amplitude variation about unmodulated 

maximum carrier amplitude. It is also called as depth of modulation, degree of modulation or 

modulation factor. 



max 

max 

x(t) 

ma   
max 

A 
 

On the basis of modulation index, AM signal can be from any of these cases:  
 

I. m a  1 : Here the maximum amplitude of baseband signal exceeds maximum carrier 

amplitude, x(t)  A. In this case, the baseband signal is not preserved in the AM envelope, 

hence baseband signal recovered from the envelope will be distorted. 

II. m a  1 : Here the maximum amplitude of baseband signal is less than carrier amplitude 

x(t)  A. The baseband signal is preserved in the AM envelope. 

 

Spectrum of Double-sideband with carrier (DSB+C) 

 

Let x(t) be a bandlimited baseband signal with maximum frequency content fm. Let this signal 

modulate a carrier c (t)  AC os( 2 f c t) .Then the expression for AM wave in time-domain is given by: 

s(t)   A  x(t)Cos(2 fc t) 

 ACos(2 fc t)  x(t) Cos(2 fc t) 
 

Taking the Fourier transform of the two terms in the above expression will give us the spectrum of the 

DSB+C AM signal. 

 

ACos(2 f t)  
1 
 (f  f )   (f  f )


c 
2 

c c 

x(t) Cos(2 f t)  
1 
 X (f  f )  X(f  f )



c 
2 

c c 

 

So, first transform pair points out two impulses at f   f c , showing the presence of carrier signal in 

the modulated waveform. Along with that, the second transform pair shows that the AM signal 

spectrum contains the spectrum of original baseband signal shifted in frequency in both negative and  

positive direction by amount f c 
. The portion of AM spectrum lying from f c 

to f c  f m 
in positive 

frequency and from  f c 
to  f c  f m 

in negative frequency represent the Upper Sideband(USB). The 

portion of AM spectrum lying from f c  f m 
to f c 

in positive frequency and from  f c  f m 
to  f c 

in 

negative frequency represent the Lower Sideband(LSB). Total AM signal spectrum spans a frequency 

from f c  f m 
to f c  f m 

, hence has a bandwidth of 2 f m 
. 

 

Power Content in AM Wave 

 

By the general expression of AM wave: 
 

s(t) ACos(2 fct)x(t)Cos(2 fct) 
 

Hence, total average normalised power of an AM wave comprises of the carrier power corresponding to 

first term and sideband power corresponding to second term of the above expression. 



c 

c 

A 

P
total 

 P
carrier 

 P
sideband 

P
carrier 

 lim 
1
 

T /2  

 A2Cos2 (2 f t)dt  
A

 

T 
T 

T /2 
2 

P
sideband 

 lim 
1
 

T /2  

 x2 (t)Cos2 (2 f t)dt 
1 

x2 (t) 

T 
T 

T /2 
2 

In the case of single-tone modulating signal where x(t)  Vm Cos(2 fmt) : 
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Where, ma is the modulation index given as m

a
 

 
 

Vm . 

A 
 

Net Modulation Index for Multi-tone Modulation: If modulating signal is a multitone signal 

expressed in the form: 

x(t) V1 Cos(2 f1t)V2 Cos(2 f2t)V3 Cos(2 f3t)...Vn Cos(2 fnt) 
 

 m 2 m 2 m 2 m 2 
Then,  Ptotal    Pcarrier  1     1         2         3    ...    n  



 2 2 2 2 


Where m
1

  
V1 , m 
A 
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V2 , m 
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V2 , ..., m 
A 

n  
Vn 
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Generation of DSB+C AM by Square Law Modulation 

 

Square law diode modulation makes use of non-linear current-voltage characteristics of diode. 

This method is suited for low voltage levels as the current-voltage characteristic of diode is highly non- 

linear in the low voltage region. So the diode is biased to operate in this non-linear region for this 

application. A DC battery Vc is connected across the diode to get such a operating point on the 

characteristic. When the carrier and modulating signal are applied at the input of diode, different 

frequency terms appear at the output of the diode. These when applied across a tuned circuit tuned to 

carrier frequency and a narrow bandwidth just to allow the two pass-bands, the output has the carrier 

and the sidebands only which is essentially the DSB+C AM signal. 

2 

a 



a ACos(2 fc t) 

c c 

c c c 

 
 

Figure 4 Current-voltage characteristic of diode 

 

 
 

 

Figure 5 Square Law Diode Modulator 

 

The non-linear current voltage relationship can be written in general as: 

 

i  av  bv2 
 

I this application v  c(t)  x(t) 
 

So 

i  a[ACos(2 f t)  x(t)]  b[ACos(2 f t)  x(t)]2 

 i  a ACos(2 f t)  a x(t)  bA2 Cos2 (2 f t)  b x2 (t)  2bA x(t) Cos(2 f t) 

 
bA2 

 
 

bA2 2 
 

i   a x(t)  Cos(2 (2f ) t) 
2 

c  b x (t) 
2 

 

Out of the above frequency terms, only the boxed terms have the frequencies in the passband of the 

tuned circuit, and hence will be at the output of the tuned circuit. There is carrier frequency term and the 

sideband term which comprise essentially a DSB+C AM signal. 

2bA x(t) Cos(2 fc t) 



Demodulation of DSB+C by Square Law Detector 

 

It can be used to detect modulated signals of small magnitude, so that the operating point may be 

chosen in the non-linear portion of the V-I characteristic of diode. A DC supply voltage is used to get a 

fixed operating point in the non-linear region of diode characteristics. The output diode current is hence 
 

 

 
 

given by the non-linear expression: 

Figure 6 Square Law Detector 

 

i  av (t) bv2 (t) 
FM FM 

 

Where vFM (t) [A x(t)]Cos(2 fct) 
 

This current will have terms at baseband frequencies as well as spectral components at higher 

frequencies. The low pass filter comprised of the RC circuit is designed to have cut-off frequency as the 

highest modulating frequency of the band limited baseband signal. It will allow only the baseband 

frequency range, so the output of the filter will be the demodulated baseband signal. 

Linear Diode Detector or Envelope Detector 

 

This is essentially just a half-wave rectifier which charges a capacitor to a voltage to the peak voltage of 

the incoming AM waveform. When the input wave's amplitude increases, the capacitor voltage is 

increased via the rectifying diode quickly, due a very small RC time-constant (negligible R) of the 

charging path. When the input's amplitude falls, the capacitor voltage is reduced by being discharged by 

a ‘bleed’ resistor R which causes a considerable RC time constant in the discharge path making 

discharge process a slower one as compared to charging. The voltage across C does not fall appreciably 

during the small period of negative half-cycle, and by the time next positive half cycle appears. This 

cycle again charges the capacitor C to peak value of carrier voltage and thus this process repeats on. 

Hence the output voltage across capacitor C is a spiky envelope of the AM wave, which is same as the 

amplitude variation of the modulating signal. 



 
 

Figure 7 Envelope Detector 

 

 

Double Sideband Suppressed Carrier(DSB-SC) 
 

If the carrier is suppressed and only the sidebands are transmitted, this will be a way to saving 

transmitter  power.  This  will  not  affect  the  information  content  of  the  AM  signal  as  the carrier 

component of AM signal do not carry any information about the baseband signal variation. A DSB+C 

AM signal is given by: 

sDSBC(t) ACos(2 fct)x(t)Cos(2 fct) 
 

So, the expression for DSB-SC where the carrier has been suppressed can be given as: 
 

sDSBSC(t) x(t)Cos(2 fct) 
 

Therefore, a DSB-SC signal is obtained by simply multiply ng modulating signal x(t) with the carrier 

signal. This is accomplished by a product modulator or mixer. 
 

 

Figure 8 Product Modulator 

 

Difference from the the DSB+C being only the absence of carrier component, and since DSBSC has 

still both the sidebands, spectral span of this DSBSC wave is still 

bandwidth of 2 f m 
. 

f c  f m 
to f c  f m 

, hence has a 

Generation of DSB-SC Signal 



c 

A circuit which can produce an output which is the product of two signals input to it is called a product 

modulator. Such an output when the inputs are the modulating signals and the carrier signal is a DSBSC 

signal. One such product modulator is a balanced modulator. 

Balanced modulator: 
 

 

 

v1    Cos(2 fc t)  x(t) 

v2   Cos(2 fc t)  x(t) 
 

For diode D1,the nonlinear v-i relationship becomes: 
 

i  av bv 2  a[Cos(2 f t) x(t)]b[Cos(2 f t) x(t)]2 
1 1 1 c c 

 

Similarly, for diode D2, 
 

i  av bv 2  a[Cos(2 f t) x(t)]b[Cos(2 f t) x(t)]2 
2 2 2 c c 

 

vi  v3  v4  (i1  i2 )R  
Now, 

 v
 
 2R[ax(t)  2 bx(t) Cos(2 f t)] 

(substituting for i1and i2)
 

 

This voltage is input to the bandpass filter centre frequency fc and bandwidth 2fm. Hence it allows the 

component corresponding to the second term of the vi, which is our desired DSB-SC signal. 

Demodulation of DSBSC signal 
 

Synchronous Detection: DSB-SC signal is generated at the transmitter by frequency up-translating the 

baseband spectrum by the carrier frequency fc . Hence the original baseband signal can be recovered by 

frequency down-translating the received modulated signal by the same amount. Recovery can be 

achieved by multiplying the received signal by synchronous carrier signal and then low-pass filtering. 

i 



c 

 
 

Figure 9 Synchronous Detection of DSBSC 

 

Let the received DSB-SC signal is : 
 

r(t) x(t)Cos(2fct) 
 

So after carrier multiplication, the resulting signal: 
 

e(t)  x(t) Cos(2 fc t).Cos(2 fc t) 

 e(t)  x(t) Cos
2 
(2 f t) 

 e(t)  
1 

x(t) 1  Cos(2 (2 f ) t)


2 
c 

 e(t)  
1 

x(t)  
1 

x(t) Cos(2 (2 f ) t) 
  

2 2 
c
 

 

The low-pass filter having cut-off frequency fm will only allow the baseband term 1 
x(t) , which is in the 

2 

pass-band of the filter and is the demodulated signal. 

 

Single Sideband Suppressed Carrier (SSB-SC) Modulation 

 

The lower and upper sidebands are uniquely related to each other by virtue of their symmetry about 

carrier frequency. If an amplitude and phase spectrum of either of the sidebands is known, the other 

sideband can be obtained from it. This means as far as the transmission of information is concerned, 

only one sideband is necessary. So bandwidth can be saved if only one of the sidebands is transmitted, 

and such a AM signal even without the carrier is called as Single Sideband Suppressed Carrier signal. It 

takes half as much bandwidth as DSB-SC or DSB+C modulation scheme. 

For the case of single-tone baseband signal, the DSB-SC signal will have two sidebands : 
 

The lower side-band: Cos(2(fc fm)t) Cos(2 fmt)Cos(2 fct)Sin(2 fmt)Sin(2 fct) 

And the upper side-band: Cos(2(fc fm)t) Cos(2 fmt)Cos(2 fct)Sin(2 fmt)Sin(2 fct) 



If any one of these sidebands is transmitted, it will be a SSB-SC waveform: 
 

s(t)SSB Cos(2 fmt)Cos(2 fct)Sin(2 fmt)Sin(2 fct) 
 

Where (+) sign represents for the lower sideband, and (-) sign stands for the upper sideband. The 

modulating signal here is x(t) Cos(2 fmt) , so let xh(t) Sin(2 fmt) be the Hilbert Transform 

 of x (t) . The Hilbert Transform is obtained by simply giving 

 
 
  

to a signal. So the expression 
 

2 


 

for SSB-SC signal can be written as: 
 

s(t)SSB  x(t)Cos(2 fct) xh(t)Sin(2 fct) 
 

 Where x (t) is a signal obtained by shifting the phase of every component present in x (t) by 
 


   
. 

h  2 
 



Generation of SSB-SC signal 

 

Frequency Discrimination Method: 

 

 
Figure 10 Frequency Discrimination Method of SSB‐SC Generation 

 

The filter method of SSB generation produces double sideband suppressed carrier signals (using a 

balanced modulator), one of which is then filtered to leave USB or LSB. It uses two filters that have 

different passband centre frequencies for USB and LSB respectively. The resultant SSB signal is then 

mixed (heterodyned) to shift its frequency higher. 

Limitations: 

 

I. This method can be used with practical filters only if the baseband signal is restricted at its 

lower edge due to which the upper and lower sidebands do not overlap with each other. Hence 

it is used for speech signal communication where lowest spectral component is 70 Hz and it 

may be taken as 300 Hz without affecting the intelligibility of the speech signal. 

II. The design of band-pass filter becomes quite difficult if the carrier frequency is quite higher 

than the bandwidth of the baseband signal. 

Phase-Shift Method: 
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Figure 11 Phase shift method of SSB-SC generation 
 

The p ase shifting method of SSB generation uses a phase shift techni ue that caus s one of the side 

bands to be cancelled out. It uses two balanced modulators instead of one. The balanced modulators 

effectively eliminate the carrier. The carrier oscillator is applied directly to the upper bala ced 

modulator along with the audio modulating signal. Then both the carrier and mod  lating signal are 

shifted in phase by 90o and applied to the second, lower, balanced modulator. The two bala ced 

modulator output are then added together algebraically. The phase s ifting action causes one side 

band to be cancelled out when the two balanced modulator outputs are combined.  
 

Demodulation of SSB-SC Signals: 
 

The baseband or modulating signal x(t) can be recovered from the SSB-SC signal by using 

synchronous detect on technique. With the help of synchr nous detection method, the spectrum of an  

SSB-SC signal centered about , is retranslated to the baseda d spectrum which is centered 

about . The rocess of synchronous detection involves multiplication of the received SSB-SC 

signal with a locall generated carrier. 
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or 

or 

Incoming SSB-SC 

he o tput of the multiplier will be 

Multiplier Low Pass 

Filter (LPF) 



When ed(t)is passed through a low-pass filter, the terms centre at c are filtered out and the output 

of detector is only the baseband part i.e. 1 
x(t) . 

2 
 

Vestigial Sideband Modulation(VSB) 

 
SSB modulation is suited for transmission of voice signals due to the energy gap that exists in the 

frequency range from zero to few hundred hertz. But when signals like video signals which contain 

significant frequency components even at very low frequencies, the USB and LSB tend to meet at 

the carrier frequency. In such a case one of the sidebands is very difficult to be isolated with the help 

of practical filters. This problem is overcome by the Vestigial Sideband Modulation. In this 

modulation technique along with one of the sidebands, a gradual cut of the other sideband is also 

allowed which comes due to the use of practical filter. This cut of the other sideband is called as the 

vestige. Bandwidth of VSB signal is given by : 

 

BW ( fc  fv)( fc  fm)  fm  fv 

 

 

Where fm bandwidth of bandlimited message signal 

 

fv width of the vestige in frequency 



i 

Angle Modulation 

 
Angle modulation may be defined as the process in which the total phase angle of a carrier wave is 

varied in accordance with the instantaneous value of the modulating or message signal, while amplitude 

of the carrier remain unchanged. Let the carrier signal be expressed as: 

 

c(t)  ACos(2 fc t  ) 

Where   2 fc t   Total phase angle 

  phase offset 

fc  carrier frequency 

 
So in-order to modulate the total phase angle according to the baseband signal, it can be done by either 

changing the instantaneous carrier frequency according to the modulating signal- the case of Frequency 

Modulation, or by changing the instantaneous phase offset angle according to the modulating signal- the 

case of Phase Modulation. An angle-modulated signal in general can be written as 

 

u(t)  ACos( (t)) 
 

where,  (t) is the total phase of the signal, and its instantaneous frequency fi (t) is given by 

 

f t  
2

d 
 t 

dt 
 

Since u(t) is a band-pass signal, it can be represented as 
 

u t   ACos 2 fct   t 


and, therefore instantaneous frequency fi becomes : 
 

fi t   fc 
2 

d 
 t 

dt 
 

For angle modulation, total phase angle can modulated either by making the instantaneous frequency or 

the phase offset to vary linearly with the modulating signal. 
 

Let m(t) be the message signal, then in a Phase Modulation system we implement to have 

 

 t     +kpm t  and with constant fc, we get (t) linearly varying with message signal. 

 

and in an Frequency Modulation system letting phase offset θ be a constant, we implement to have 
 

  fi  t   fc +k f m t  , to get (t) linearly varying with message signal 

where kp and kfare phase and frequency sensitivity constants. 

1 

1 





 

 



The maximum phase deviation in a PM system is given by:  

 

max  kp m t 


And the maximum frequency deviation in FM is given by:  
 

fmax  k f m t 
max 

max  2 
kf 

m t 
max 

 

 

 

Single Tone Frequency Modulation 

The general expression for FM signal is  s t   ACos ct  k f  m(t) dt

So for the single tone case, wheremessage signal is  m t   VCos mt 


Then s(t)  ACos 

 t  

k f V  
 

 
 

 t) 
 c 

m 

Sin( m 


 s(t)  ACos ct  mf Sin(mt)




Here mf 
 

k
f 
V 
 
 

 Modulation Index 

m m 

 

 

 

Types of Frequency Modulation 

 
High frequency deviation =>High Bandwidth=> High modulation index=>Wideband FM 

Small frequency deviation =>Small Bandwidth=> Small modulation index=>Narrowband FM 

 
 

Carson’s Rule 

 
It provides a rule of thumb to calculate the bandwidth of a single-tone FM signal. 

 

 Bandwidth  2f  fm   21 mf  fm 

 

If baseband signal is any arbitrary signal having large number of frequency components, this rule can be 

modified by replacing m f  by deviation ratio D. 

max 





 

 

D = 
Peak Frequency deviation correcponding NASINUn poccibSe ANpSitude of N(t) 

MasiNUN frquency cONPONENT precent in the NoduSating cignaS N(t) 

 

Then the bandwidth of FM signal is given as: Bandwidth  2 1 D  fmax 

 

Spectrum of a Single-tone Narrowband FM signal 

 
A single-tone FM modulated signal is mathematically given as: 

 

s(t)  ACos ct  m f Sin(mt)
 s(t)  ACos(ct) Cos(mf Sin(mt))  ASin(ct) Sin(mf Sin(mt)) 

 

Since for narrowband FM modulation index m f<<1, sowe approximate as: 

 

Cos(mf Sin(mt))  1 and Sin(mf Sin(mt))  mf Sin(mt) 

 

 
 

And the expression s(t) becomes: 

 

 

The above equation represents  the  NBFM  signal.  This  representation  is  similar  to  an  AM  

signal, except that the lower sideband frequency has a negative sign. 

 

 

 
Spectrum of a Single-tone Wideband FM signal 

 
A single-tone FM modulated signal is mathematically given as: 

 

s(t)  ACos ct  m f Sin(mt)
 s(t)  ACos(ct) Cos(mf Sin(mt))  ASin(ct) Sin(mf Sin(mt)) 

 

The FM signal can be expressed in the complex envelope form as: 

 

s(t)  Re  Ae 
jct  jmf Sin(mt ) 

 s(t)  Re  Ae jm f Sin(mt ) 
* e jct 

 s(t)  Re s̃(t) * e jct 


Where  s̃(t)  Ae jm f Sin(mt ) 
, which is a periodic function of period   

1   
. 

fm 

 

The Fouries series expansion of this periodic function can be written as: 

s(t)  ACos(ct)  Amf Sin(ct)Sin(mt) 

 s(t)  ACos(  t) 
c 

Am 

2 

f Cos(    ) t Cos( 
c m 

   ) t 
c m 



s̃ (t)   C e  

 

n f 



m c 









j 2 nfmt 
n 

n



Where Cn spectral coefficients are given by 
 

 
Cn  fm 

1 
 

2 fm 


   

1 

2 fm 

 
s̃(t) e j2 nfmt  

dt 

 

1 
 

2 fm 

 Cn  Afm 
   

1 

2 fm 

e 
jmf Sin(mt ) j 2 nfmt  dt

 

 

Substituting x  2 fmt , the above equation becomes, 

 
A 

 jm Sin(x) jnx  Cn   e f 



 
dx 

 

As the above expression is in the form of n th order Bessels function of first kind : 
 

1 
 jm Sin(x) jnx 

 Jn (m f )   e f 



 
dx , 

 

therefore we can write Cn  AJn (m f ) 

 
 

 

So, s̃ (t)   AJ 
n

(m )e j 2 nfmt 

 

Hence the FM signal in complex envelope form can be written as: 
 

s(t)  A* Re 

  Jn (m f )e 

j2 nf t  t  


n 




This is the Fourier series representation of Wideband Single-tone FM signal. Its Fourier Transform can 

be written as: 
 

 

The spectrum of Wideband Single-tone FM signal indicates the following: 

 

1. WBFM has infinite number of sidebands at frequencies (fc  nfm ) . 



2

2

s(t)  A* J (m ) Cos(2 nf t   t)





n




n f m c 


S(f)  A* 


n

 n f 



J (m ) (f  f  nf )   (f  f  nf )

c m c m 




2. Spectral amplitude values depends upon Jn (m f ) . 

3. The number of significant  sidebands  depends  upon  the  modulation  index m f  .For  m f   1 , 

J0 (m f ) and J1 (m f ) are only significant, whereas for m f  1 , many significant  sidebands 

exists. 

Methods of Generating FM wave 

 

Direct FM: In this method the carrier frequency is directly varied inaccordance with the incoming 

message signal to produce a frequency modulated signal. 

Indirect FM: This method was first proposed by Armstrong. In thismethod, the modulating wave is first 

used to produce a narrow-band FMwave, and frequency multiplication is next used to increase 

thefrequency deviation to the desired level. 
 

Direct Method or Parameter Variation Method 
 

In this method, the baseband or modulating signal directly modulates the carrier. The carrier signal is  

generated with the help of an oscillator circuit. This oscillat r circuit uses a parallel t ned L-C circuit. 

Thus the frequency of oscillation of the carrier generation is governed by the expression:  

 

c  



The carrier frequency is made to vary in accordance with the baseband or modulating signal by making 

either L or C depend upon to the baseband signal. Such an oscillator whose frequency is controlled by a 

modulating signal voltage is called as Voltage Controlled Oscillator. The frequency of VCO is varied 

according to the modulating signal simply by putting shunt voltage variable capacitor (varactor/varicap) 

with its tuned circuit. The varactor diode is a semiconductor diode whose junction capacitance changes 

with dc bias voltage. The capacitor C is made much smaller than the varactor diode capacitance Cd so 

that the RF voltage from oscillator across the diode is small as compared to reverse bias dc voltage 

across the varactor diode. 

 

 
 

 
 

Figure 12 Varactor diode method of FM generation(Direct Method) 
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Drawbacks of direct method of FM generation: 
 

1. Generation of carrier signal is directly affected by the modulating signal by directly controlling 

the tank circuit and thus a stable oscillator circuit cannot be used. So a high order stability in 

carrier frequency cannot be achieved. 

2. The non-linearity of the varactor diode produces a frequency variation due to harmonics of the 

modulating signal and therefore the FM signal is distorted. 

Indirect method or Armstrong method of FM generation 

 

A very high frequency stability can be achieved since in this case the crystal oscillator may be used as a 

carrier frequency generator. In this method, first of all a narrowband FMis generated and then frequency 

multiplication is used to  cause  required  increased  frequency  deviation.The  narrow  band  FM  

wave is then passed through a frequency multiplier to obtain the wide band FM wave. Frequency 

multiplication scales up the carrier frequency as well as the frequency deviation. The crystal controlled 

oscillator provides good frequency stability. But this scheme does not provide both the desired 

frequency deviation and carrier frequency at the same time. This problem can be solved by using 

multiple stages of frequency multipliers and a mixer stages. 

 

 

Figure 13 Narrow Band FM Generation 
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FM Demodulators 

 

In order to be able to demodulate FM, a receiver must produce a signal whose amplitude var ies as 

according to the frequency variations of the incoming signals and it should be insensitive to any 

amplitude variations in FM signal. Insensitivity to amplitude variations is achieved by having a high 

gain IF amplifier. Here the signals are amplified to such a degree that the amplifier runs into limiting. In 

this way any amplitude variations are removed. Generally a FM demodulator is composed of two parts: 

Discriminator and Envelope Detector.Discriminator is a frequency selective network which converts 

the frequency variations in an input signal in to proportional amplitude variations. Hence when it is 

input with an FM signal, it can produce an amplitude modulated signal. But it does not generally alter 

the frequency variations which were there in the input signal. So the output of a discriminator is a both 

frequency and amplitude modulated signal. This signal can be fed to the Envelope Detectorpart of FM 

demodulator to get back the baseband signal 
 

 

Figure 14  Slope detector 
 

 

Figure 15 Frequency response of slope detector 
 
 

 
Slope detector: A very simplest form of FM demodulation is known as slope detection or 

demodulation. It consists of a tuned circuit that is tuned to a frequency slightly offset from the carrier of 



the signal.As the frequency of the signals varies up and down in frequency according to its modulation, 

so the signal moves up and down the slope of the tuned circuit. This causes the amplitude of the signal 

to vary in line with the frequency variations. In fact, at this point the signal has both frequency and 

amplitude variations.It can be seen from the diagram that changes in the slope of the filter, reflect into 

the linearity of the demodulation process.The linearity is very dependent not only on the filter slope as it 

falls away, but also the tuning of the receiver - it is necessary to tune the receiver frequency to a 

point where the filter characteristic is relatively linear. The final stage in the process is to demodulate 

the amplitude modulation and this can be achieved using a simple diode circuit. One of the most 

obvious disadvantages of this simple approach is the fact that both amplitude and frequency variations 

in the incoming signal appear at the output. However, the amplitude variations can be removed by 

placing a limiter before the detector. The input signal is a frequency modulated signal. It is applied to 

the tuned transformer (T1, C1, C2 combination) which is offset from the centre carrier frequency. This 

converts the incoming signal from just FM to one that has amplitude modulation superimposed upon the 

signal. This amplitude signal is applied to a simple diode detector circuit, D1. Here the diode provides 

the rectification, while C3 removes any unwanted high frequency components, and R1 provides a load. 

 
 

PLL FM demodulator / detector:When used as an FM demodulator, the basic phase locked loop can 

be used without any changes. With no modulation applied and the carrier in the centre position of the 

pass-band the voltage on the tune line to the VCO is set to the mid position. However, if the carrier 

deviates in frequency, the loop will try to keep the loop in lock. For this to happen the VCO frequency 

must follow the incoming signal, and in turn for this to occur the tune line voltage must vary. 

Monitoring the tune line shows that the variations in voltage correspond to the modulation applied to 

the signal. By amplifying the variations in voltage on the tune line it is possible to generate the 

demodulated signal.The PLL FM demodulator is one of the more widely used forms of FM 

demodulator or detector these days. Its suitability for being combined into an integrated circuit, and the 

small number of external components makes PLL FM demodulation ICs an ideal candidate for many 

circuits these days. 

Figure 16 PLL FM Demodulator 
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Module‐III 

Sources and types of Noise 

Type of noises are 

• Thermal Noise 

• Shot Noise 

• Additive Noise 

• Multiplicative Noise (fading) 

• Gaussian Noise 

• Spike Noise or Impulse Noise 

 
Source of thermal noise are resistive elements in electrical and electronic circuits. Current 

flowing in conductors can also be an example. Constant agitation at molecular level in all 

material, which prevails all over the universe, is another example. In brief any source which 

provides the current is the cause of the thermal energy. Source of shot noise is the solid state 

semiconductor devices like diode, triode, tetrode, and pentode tubes. The noise which are 

additive in nature are known as additive noise. This corrupts message signal. Fading occurs 

because of signal or noise available at destination from multiple paths. White noise is basically 

approximated by Gaussian noise as its probability density function is Gaussian. Spike noise is 

observed in FM receivers because of low input SNR. 

 
Frequency Domain Representation Noise 

Figure 3.1: (a) A sample noise waveform. (b) A periodic waveform is generated by repeating 

the interval in (a) from –T/2 to T/2 

n (t) is a non periodic complete noise where as n(s)(t) is a sample of it and n(c)(t) is a periodic 

noise as shown in above figure 3.1(b). 
 

 

 

 
(3.1) 

 

 
(3.2) 
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Power Spectrum of Noise 

 

Figure 3.2: The power spectrum of the waveform n(c) 

Power spectral density of noise n(c)at kf or ‐ kf frequency interval can be written as 
 

 

Mean Power spectral density  

Total power in the interval:   

 

Representation of Noise 

Actual noise n (t) which is a non‐periodic signal can be represented as 
 
 
 
 

, 

Where,  
 

Now we can write 
 

 
 

Total power PT is  

Spectral Component of Noise 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(3.3) 
 

(3.4) 
 

(3.5) 
 
 
 
 

 
(3.6) 

 
 

(3.7) 

 
(3.8) 

 

 
(3.9) 

 
 
 

(3.10) 
 
 

(3.11) 

 

Spectral component of noise at kth instant and within an interval of f can be represented as 

nk(t) as given below. 

 
(3.12a) 

(3.12b) 



k 

k 

Corresponding power can be written as 
 

 

 
Taking a time t = t1, such that cos 2kf = 1, we have Pk = ā 2̄, similarly 

Taking a time t = t2, such that cos 2kf = 0, we have Pk = b̄ 2̄, Hence 
 

 
 

It is observed that 
 

Let us take two spectral components of noise as given by 
 

Considering similar analysis as above, we have 

(3.13) 
 
 
 
 

 
(3.14) 

 

 
(3.15) 

 

 
(3.16) 

 
 

 
(3.17a) 

(3.17b) 
 

(3.18) 

 

This above explanation indicates noise n (t) is random, Gaussian, and stationary process, 

whereak, bk, aS, bS, are uncorrelated random Gaussian random variables. The probability 

density function (pdf) of ck and k can be given as 
ƒ(c ) = 

ck ec2/2Pk c  0 (3.19) 
k k 

k 

(3.20) 
 

The pdf ƒ(ck) describes a Reyliegh distribution, where as pdf ƒ(8k) describes a Uniform 

distribution. 

 
Narrowband Filter Response to Noise 

In the following figure 3.3, the filter used is a narrow band filter with transfer function H (f) 

and pass band is B Hz. The noise at the input of the filter is n (t). 

 
 
 
 
 
 
 
 
 

Figure 3.3: Filter response to narrowband noise 

k P 



The noise n (t) to the filter H (f) is a wideband noise, whereas the noise at the output of the 

same filter is a narrowband noise n (t). The amplitude variation of this n (t) is small as it 

contains very few harmonics. If we reduce the pass-band B of the filter to a very small value 

then the variation in amplitude of n (t) will be small and may be a approximated sinusoidal 

signal. 

Effect of Filter to Noise PSD 
 

The noise sample at the output of the filter can be designated as nk0 
(t). 

  (3.21) 
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    (3.23) 

 

  (3.24) 

(3.25) 
 

  (3.26) 

 
Mixing Noise with Sinusoid 

 

Noise nk(t) mixed with a sinusoidal signal at fo can be written as 
 

 

  (3.27) 

It is already understood that 

 

  (3.28) 

In case of actual noise f tends to zero, kf becomes f and therefore, we can write 

 

  (3.29) 

Let us single out two spectral components of noise n (t) 



o 

nk(t) = akcos(2nk∆ƒt) + bksin(2nk∆ƒt) and (3.30a) 

nS(t) = aScos(2nl∆ƒt) +  bS sin(2nl∆ƒt) (3.30b) 

kf and lf is chosen in such a manner that fo = [(k + l)/2]f ; this means fo is in the middle of 

kf and lf. Let say lf > kf. Now we can define two difference frequency components as 

given below. 

pf = fo – kf = lf – fo. These difference frequency components are also uncorrelated   as 

follows. 

 
nS(t). cos2nƒot = al cos2n(l∆ƒ + ƒo)t + bl sin2n(l∆ƒ + ƒo)t + al cos2n(l∆ƒ — ƒo)t +  

2 2 2 
bl sin2n(l∆ƒ — ƒ )t 
2 

 

We find the difference frequency components as 
 

 

 

 
 

(3.31a) 
 
 

(3.31b) 

 

np1(t) is the difference component due to  the  mixing of frequencies fo  and kf, while np2(t) is  the 

difference component due to the mixing of frequencies fo and lf. Now we are interested to find 

the expected values of the product of np1(t) and np2(t). 

Similar to the last explanation, we have 

 
              (3.32) 

So power at difference frequencies 
 

  (3.33) 

Thus mixing noise with a sinusoid signal results in a frequency shifting of the original noise by 

fo. The variance of this shifted noise is found by adding the variance of each new noise 

component. This is also applicable to two shifted power spectral density plots. 

Mixing Noise with Noise 
 

 

  (3.34) 

 
(3.35) 



 

 

(3.36) 

 

Linear Filtering of Noise 
 

Thermal noise and Shot noise have similar power spectral density which can be approximated 

as the power spectral density (PSD) of the White noise. This PSD is as shown in figure 3.4. 
 

Figure 3.4: Power spectral density of noise 
 

 

Figure 3.5: A filter is placed before a demodulator to limit the noise power input to the 

demodulator 

 
In order to minimize the noise power that is presented to the demodulator of a receiving 

system, a filter is introduced before the demodulator as shown in figure 3.5. The bandwidth B 

of the filter is made as narrow as possible so as to avoid transmitting any unnecessary noise to 

the demodulator. For example, in an AM system in which the baseband extends to a frequency 

of fM, the bandwidth B = 2fM. In a wideband FM system the bandwidth is proportional to twice 

the frequency deviation. 

 
Noise and Low Pass Filter 

One of the filter most frequently used is the simple RC low-pas filter (LPF). The same RC LPF 

with a 3 dB cutoff frequency fc has the transfer function 

 

T.F. of RC Low Pass Filter:  

If PSD of input noise Gni 
(ƒ). The PSD of output noise is 

 

 

(3.37) 
 
 
 
 
 

(3.38) 



Noise power at the filter output, No can be expressed as 
 

 

 

Ideal Low Pass Filter:  

 

Noise and Band Pass Filter 

 
 

(3.39) 
 

 
(3.40) 

 
 
 

(3.41) 
 
 
 

(3.42) 

 

 

 
 

Figure 3.6: A rectangular band‐pass filter 
 

 

Noise and Differentiator 

Transfer function of a differentiator is:  
 

     is applied at the input 
 

 

If the differentiator is followed by a rectangular low pass filter having a bandwidth B. 

Noise power at the output of the LPF is 

 
 
 

(3.43) 
 
 
 
 
 
 

 
(3.44) 

 
 
 
 
 
 

(3.45) 



Noise and Integrator 

Transfer function of an integrator is: 
 
 

 

(3.46) 
 

 
(3.47) 

 

 
(3.48) 

 

Noise Bandwidth 

The noise bandwidth (BN) is defined as the bandwidth of an idealized (rectangular) filter which 

passes the same noise power as does the real filter. As per the definition we can find BN = 

(/2)fo, where fo is the frequency at which the transfer function of the actual filter is centered. 

 
Quadrature components of Noise 

It is sometimes more advantageous to represent Narrowband noise centred around f0 as 
 

 

 

 
These nc(t) and ns(t) are known as quadrature component of noise. 

 

 

Figure 3.7: Quadrature components of noise 

Now as per the initial notation 

 

 
 

 
 

Where, K.f = f0, Hence 

(3.49) 
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A. M. Receiver 

(3.53) 
 

 
(3.54) 

 

This receiver as shown in figure 3.8 is capable of processing an amplitude modulated carrier 

and recovering the baseband signal. The modulated RF carrier + noise is received by the 

receiving antenna and submitted to Radio frequency (RF) amplifier. After a number of 

operations as indicated in the same figure 3.8, finally baseband signal with some small noise is 

obtained at the output of the receiver. 
 

Figure 3.8: A receiving system for amplitude modulated signal 
 

Superheterodyne principle 
 

In early days TRF receivers were used to detect the baseband signal from modulated RF signal. 

The performance of such receiver varies as the incoming RF frequency varies. This is because 

it uses single conversion technique. Later double conversion technique (frequency of incoming 

RF signal changes two times) is used by some receiver as shown in figure 3.8. These are 

known as superheterodyne receiver. The main idea behind the design of such receiver is that: 

whatever may be the frequency of the incoming RF signal, the output after first conversion 



always produces a fixed frequency known as intermediate frequency. Due to this the 

performance of receiver remains same for all type of incoming RF signal.  

 
 

Calculation of Signal power and noise power in SSB‐SC 

 

SSB‐SC: Signal Power 
 
 

Figure 3.9: 
 
 
 
 
 

 

Output of multiplier is 
 

 

Output of baseband filter can be written as 
 

 

The input signal power is 
 

 

The output signal power is 
 

 

(3.55) 
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Noise Power 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(3.61) 
 
 

SNR, 
So 

= 
Si/4 

= 
Si

 
   

(3.62) 

No 5ƒM/4 5ƒM 
 
 

Calculation of Signal power and noise power in DSB‐SC 
 

When a baseband signal of frequency fM is transmitted over a DSB-SC system, the bandwidth 

of the carrier filter must be 2 fM rather than fM. Thus, along with signal the input noise in the 

frequency range fc – fM to fc + fM will contribute to the output noise, rather than only in the  

range of fc to fc + fM as in SSB case. 

DSB‐SC: Signal Power: 
 
 
 

(3.63) 
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(3.65) 

Figure 3.10: 



 
 

 

 
DSB‐SC: Noise Power 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.11: 
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SNR, So = Si  

(3.68) 

 
(3.69) 

No yfM 

 
 

DSB‐SC: Arbitrary Modulated Signal: 
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Calculation of Signal power and noise power in DSB‐C 

DSB‐C: Arbitrary Modulated Signal: 

Let us consider the case, where a carrier accompanies the double sideband signal. 

Demodulation is achieved synchronously as in SSB-SC and DSB-SC. We note that the carrier 

increases the total input signal power but makes no contribution to the output signal power. We 

know that 

  (3.83) 

Suppose that the received signal is 

  (3.84) 

The carrier power, Pc = A2/2; The sidebands are contained in the term Am(t) cos 2fct. The 

power associated with the term is (A2/2)N̄ 2̄̄(̄t̄), where N̄ ̄ 2̄(̄t̄) 

of the modulating waveform. 

We now have the total input power Si as given by 

is the time average of the square 

S   = P  + S(SB)  = Æ
2  

+ Æ
2  

N̄̄ 2̄(̄t̄) = Æ
2 

[1 + N̄ 2̄̄(̄t̄)] = P [1 + N̄ 2̄̄(̄t̄)] 
i c i 2 2 2 c 

(3.85) 

S
(CB) (Æ2

/2)N̄ ̄ 2̄ (̄t̄) 
 

    i = Æ2
 ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄  (3.86a) 

Si ( /2){1+N2(t)} 
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SNR, So  =   N

2 Si
 

 

No 2+N2 yfM (3.90) 

 

Figure of Merit: 
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The Square Law Demodulator and Threshold: 

DSB-SC as well as DSB-C can be demodulated using square law demodulator. This avoids 

requirement of synchronous carrier as in case of synchronous detector, which is costlier. But in 

case of synchronous detector there is no threshold i.e. as Si/NM decreases by a factor of , the 

So/No is also decreases by a factor of . Therefore, figure of merit  is independent of Si/NM. In 

case of nonlinear demodulator as Si/NM decreases, there is a point, a threshold at which the 

So/No decreases more rapidly than does the Si/NM. This threshold often makes the limits to the 

usefulness of the demodulator. 

 

 

Figure 3.12: The square‐law AM demodulator 
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Figure 3.13: 
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SNR, 
So   = 

Ǣ̄4̄̄N̄̄̄2̄̄(̄t̄)̄ 
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No 2yfM Æ2+3y2f2 

 

 
 

Above threshold, when Pc/NM is very large, 
 

 

 

 

 
Figure 3.14: 
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(3.113) 



 

Figure 3.15: Performance of a square‐law demodulator illustrating the phenomena of 

threshold 

 
The solid line in figure 3.15 is applicable to the equation as in (3.111). The dashed line 

which passes through the center of the axis is applicable to the equation as in (3.112). The third 

line in the left and dashed is applicable to the equation as in (3.113). 

From the figure 3.15, it is clear that as Pc/NM decreases, the demodulator performance 

curve fall progressively further away from the straight line plot corresponding to Pc/NM very 

large (i.e. applicable to synchronous detector). 

Let’s say we choose the performance curve of square law demodulator falls away by 1 

dB from performance curve of synchronous demodulator. This is achieved at Pc/NM = 4.6 dB 

i.e. Pc = 2.884 NM. 

If Pc/NM is taken more than 2.9 then the difference in ordinate value will be less than 1 

dB and it is still better. When N̄ ̄ 2̄(̄t̄) 1 ا, then Si  ÷ Pc. So, we can say  Si  ≤ 2.9 NM. 

 
The Envelop Demodulator and Threshold: 

This envelope demodulator can be used when |N(t)| € 1. Let us take quadrature component 

expression of noise. (3.114) 
 

 

If the noise n(t) has a PSD of /2 in the range of |ƒ — ƒc| ≤ ƒM and is zero elsewhere. Then nc(t) and 

ns(t) have the PSD of  in the frequency range of –fM to fM. At the demodulator i/p, the i/p signal and 

noise is 

 

(3.115) 

The output signal plus noise just prior to base‐band filtering is the envelope (phasor sum) 



 
 

(3.116) 
 
 
 
 

(3.118) 
 

(3.119) 

 

(3.120) 
 

The  here is same as the  obtained using synchronous demodulator. To make a 

comparison with the square law demodulator, we assume 

N̄̄ 2̄(̄t̄) 1 ا. In this case as before Si  ÷ Pc and equation (3.120) reduces equation (3.112). 

A threshold can be considered by understanding that the synchronous demodulator, the 

square law demodulator, and the envelop demodulator all performs equally well provided 

N̄̄ 2̄(̄t̄) 1 ا.  Like  square  law  demodulator,  the  envelop  demodulator  exhibits  a  threshold.  As 

the input SNR decreases a point is reached where the SNR at the output decreases more rapidly 

than the input. The calculation of SNR is quite complex, we can simply state the result that for 

Si/NM  1 ا, and N̄ ̄ 2̄(̄t̄) 1 ا  

 

Comparison: 

(i) Square law demodulator has lower threshold 

(ii)It also performs better below threshold 

(3.121) 

(3.122) 



Module – IV 

Noise in Frequency Modulation System: 

An FM Receiving System 

Figure 4.1: A limiter-discriminator used to demodulate an FM signal 

 
Limiter and Discriminator: 

 

 
 

V1(t) = 

Vi(t) 
AL 

Vi(t) 
—AL 

LVi(t) 

0 ≤ t ≤ t1 
t1 ≤ t ≤ t2 
t2 ≤ t ≤ t3 
t3 ≤ t ≤ t4 
t4 ≤ t ≤ T 

 
 

 
Figure 4.2: a) A limiter input-output characteristics. b) A cycle of the input carrier. c) The output 

waveform. 

t2 t1 

t3 t4 
T 



Limiter is to suppress amplitude variation noise. Discriminator gives at output an 

amplitude variation according to instantaneous frequency of input. This is as shown in figures 

4.1 1nd 4.2. 

The baseband signal is recovered by passing the amplitude modulated waveform 

through an envelope detector. 

(4.1) 

  (4.2) 

  (4.3) 
 

  (4.4) 

Here AL is the limited amplitude of the carrier so that AL is fixed and independent of the input 

amplitude, and ωct + φ(t) is the instantaneous phase. 

  (4.5) 
 

(4.6) 
 

SNR Calculation: 

Signal Power: 

Consider that the input signal to the IF carrier filter of figure 4.1 is 
 

 

Bandwidth B = 2f + 2fM 

The signal is s2 (t) [corresponding to v2 (t)] given by 
 

 
 

 

We find foe the output of the discriminator 
 

 

Baseband filter rejects the DC component and passes the signal component 
 

 
 

 

Noise Power: 

The carrier and noise at the limiter input are 
 

 

 
 
 

 
(4.7) 

 
(4.8) 

 

 
(4.9) 
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(4.11) 
 
 

 
(4.12) 

 
 
 

 
(4.13) 



 

Figure 4.3: A Phasor diagram of the terms in above equation (4.13) 

  (4.14) 

(4.15) 
 

  (4.16) 

We ignore the time-varying envelope R(t), since all time variations are removed by the limiter. 

Output of the limiter-band-pass filter, 2(t) =AL cos[ωct + (t)] , where AL is a constant. Assume 

that we are operating under the condition of high-input SNR such that │nc(t)│≤ A and 

│ns(t)│≤ A 
 

 
 

 
 

 
 

 

(4.17) 
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Figure 4.4 
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Output‐noise power 

(4.23) 

 

 
 

 
 

 
SNR, 

So   = 
α2k2N̄̄ ̄2̄ (̄t̄) 

 
=   

3    k2N̄̄ ̄2̄ (̄t̄) Æ2/2 
 

(4.24) 

 
(4.25) 

No (8n2/3)(α2y/Æ2)f3 4n2 2 yfM 

Let us consider that the modulating signal m(t) is sinusoidal and produces a frequency 

deviation f. then the input signal si(t) 

 
 

 
 

 
 

 

Comparison: FM and AM 

Let us compare the result for sinusoidal 100% modulation 

 
 

 
(4.26) 
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FM is better if þ ÷ √2/3 ÷ 0.5 or more. But this comes at the cost of higher bandwidth as 

(4.32) 

ForþFM = 2þƒM and bandwidth of AM system is þAM = 2ƒM, 
 
 

 
(4.33) 

 

Several authors to make the comparison not on the basis of equal power but rather on the basis 

of equal signal power measured when the modulation m(t) = 0. In this case, as it can be easily 

verified, we find that the above equation (4.33) can be replaced by 

(4.34) 



 SNR Improvement: Pre‐emphasis and de‐emphasis 
 

 

Figure 4.5: Pre‐emphasis and de‐emphasis in an FM system 
 

 

 

 

 

Figure 4.6: (a) Deemphasis network and (b) Preemphasis network 
 

 

 

 

Hp(f).Hd(f) = r/R = constant 

 

 

 

 

 
 

 

 

 

 

 
(4.35) 
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(4.39) 
 
 

(4.40) 
 

(4.41) 
 
 

(4.42) 
 

The improvement in signal-to-noise ratio which results from pre-emphasis depends on the 

frequency dependence of the PSD of the baseband signal. Let us assume that the PDF of a 

typical audio signal, say music, may reasonably be represented as having a frequency 

dependence given by 



 

 

 

 
 

 
 

Figure 4.7: Normalized logarithmic plots of the frequency characteristics of 

a) the de-emphasis network and b) the pre-emphasis network 
 

 

Integrating and solving for K2 
 

 

 
 

When ƒM⁄ƒ1 1 ب  

(4.43) 
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(4.48) 

 

In commercial FM broadcasting f1 = 2.1 kHz, while fM may reasonably taken as = 15 kHz 
 



Multiplexing: 
 
 
 
 

 

Figure 4.8: A system of frequency division multiplexing 
 
 
 

Figure 4.9: Comparison of an FM system in (a) with a phase modulation system in (b) 



 
 

Figure 4.10: To illustrate that in the multiplex system of figure 4.8 using FM, channels 

associated with high carrier frequencies are noisier than those associated with lower 

frequencies. 

8(t) = nc(t)/A is the phase-modulation noise. Since 8(t) and nc(t) are directly related, the 

form of the power spectral density of is identical. 

The quadratic nature of noise power in FM makes it inferior to PM for higher carrier 

frequencies. In PM, noise power in each channel is same. 

Assuming that both channels (a) and (b), are constrained to use the same bandwidth. The 

frequency range of the topmost channel of the composite signal M(t) extends from (N-1)fM to 

NfM is the frequency range of an individual in the absence of de-emphasis, the noise output of 

the top channel 

 

 

 

 
(4.49) 
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The condition of equal bandwidth requires that 

 
(4.52) 

 
 

(4.53) 
 
 
 

(4.54) 



Effect of Transmitter Noise 
 

Figure 4.11: 
 
 
 

A network similar to the pre-emphasis circuit of figure 4.6(b) is suitable. In practice the 4.8 dB 

advantage quoted above for PM over FM is not realized. The advantage is more nearly 3 to 4 

dB. 

Threshold in Frequency Modulation: 

 

  (4.55) 

Experimentally it is determined that the FM system exhibits a threshold. 



 
 

Figure 4.12: Plots of output SNR against input SNR for linear modulation and demodulation 

and also for an FM system illustrating the phenomenon of threshold in FM. 

The threshold value of Si/NM is arbitrarily taken to be the value at which So/No falls 1 dB below 

the dashed extension. 

For larger  the threshold is also higher. 
 

 
Figure 4.13: Thermal noise at discriminator output 



 
 

Figure 4.14: A spike superimposed on a background of smooth (thermal) noise 
 

The onset of threshold may be observed by examining the noise output of an FM discriminator 

on a CRO. A spike or impulse noise appears (with clicking sound) in the background thermal- 

type noise, usually referred to as smooth noise. 
 

Figure 4.15 
 
 
 

Phase Lock Loop (PLL) 
 

The PLL is an important circuit which helps to detect the original signal from a 

frequency modulated signal corrupted by noise. The operation of this device has been properly 

explained in Module II. 

In fact PLL is very popular because of their low cost and superior performance, 

especially when SNR is low. FM demodulation using PLL is the most widely used method 

today. We know PLL tracks the incoming signal angle and instantaneous frequency.  
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A.K.H (S) 

θ˙o = Ceo(t) 

A.sin{ct + i (t)} Loop Filter 

H (S) 

VCO 

0 

 

 

 

 

 

 

 
 

B.cos{ct + o(t)} 
 

a) 
 

 

 
b) 

 

Figure 4.16 a) Phase Lock Loop (PLL) b) Equivalent circuit of PLL 
 

The free running frequency of VCO is set at the carrier frequency c. The 

instantaneous frequency of the VCO can be given by 

VCO = c + C.eo(t) (4.56) 

If the VCO output is B.cos{ct + o(t)}, then the instantaneous frequency can be 

represented as ωVCO =  ωc + θ  ̇
o(t) (4.57) 

This means, θ˙
o(t) = Ceo(t) (4.58) 

In the above equations C and B are constants of PLL. 

The multiplier output in figure 4.16 a) is AB.sin (ct + i)  cos (ct + o)  = (AB/2)[sin  (i 

– o) + sin(2ct + i + o)]. The term (AB/2).sin(2ct + i + o) is suppressed by the loop  filter 

(LPF). Hence the effective input to the is (AB/2).sin {i(t) – o(t)}. If h(t) is the unit  impulse 

response of the loop filter, then 

eo(t) = h(t) ^ 1 ABsin{θi(t) — θo(t)} = 1 AB ƒ
T 

h(t — x) sin{θi(x) — θo(x)}dx 
  

2 2 0  
(4.59) 

But, θ˙
o(t) = Ceo(t), therefore θ  ̇

o(t) = AK ƒ
t 

h(t — x) sin θe(x) dx (4.60) 

i (t) + 


e(t) 

– o(t)  

t 

ƒ ( )dt 
0 

Sin ( ) 



–œ 

–œ 

Where, K = (CB/2) and e(t) is the phase error and defined by e(t) = i(t) - o(t) i.e. o(t) = 

i(t) - e(t). 

FM carrier is A.sin{ct + i (t)} 
 

Where, θi(t) = Kf ƒ
t

 m(α)dα (4.61) 
 

Hence, θo(t) = Kf ƒ
t

 m(α)dα — θe(t) (4.62) 
 

When e is very small, then eo(t) = 1 θ  ̇
o(t) = KF m(t) (4.63) 

C C 
 

Thus PLL works as a FM demodulator. If the incoming signal is phase modulated 

wave, then, o (t) = i(t) = Kpm(t) and eo(t) = Kpm  ̇(t)/C . In this case we need to integrate eo 

(t) to obtain the desired signal. 
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Sampling Theorem: 
 

All pulse modulation scheme undergoes sampling process. Sampling of low 
frequency(LF) signal is achieved using a pulse train. Sampling process provides samples 
of the message signal. Sampling rate of sampling process must be proper to get original 
signal back. Sampling theorem defines the sampling rate of sampling process in order to 
recover the message signal. The solution to sampling rate was provided by Shannon. 

Basically there are two types of message signal, such as- 
(i) Low-pass (baseband) signal, 
(ii) Band-pass (passband) signal. 

 

 
 Sampling rate for Low-Pass Signal:--

Sampling theorem states that if g(t) being a lowpass signal of finite energy and is 
band limited to W Hz, then the signal can be completely described by and 
recovered from its sampled values taken at a rate of 2W samples or more per 
second. 

 

Fig. 1.1  Representation of sampling process. 

 

 
Thus the time period of sampled signal must be, Ts ≤ 1/(2W). 

Considering a signal g(t) as shown be a low pass signal where fourier transform of g(t), 

G(f) = 0, for f > W 

= finite, for f ≤ W. 

Ideally, we can get sampled values of g(t) at a regular time interval of time Ts if we 
multiply a train of pulses δTs to g(t) as shown. 



The product signal [gδ(t)], ie, the sampled values can be written as, 

gδ(t) = g(t) δTs(t) 

 
 

(1.1a) 

or, gδ(t) = g(t) (1.1b) 
 

If we denote g(nTs) as the weights of low pass signal at sampled interval, then we can 
write, 

 

gδ(t) = 
 

Taking the fourier transform of equation 1.2, we get 

Gr(f) = G(f) 

(1.2) 

Or, Gr(f) =1/Ts 
 

or, Gr(f) =1/Ts (1.3) 
 

Now, we can draw graphically the frequency components of both the original signal and 
the sampled signal as follows, 

 
 
 
 

ig. 1.1a Spectrum of original 

signal. 

 

 

 

 
Fig. 1.1b Spectrum of Sampled signal. 

 
 

Note:- The process of uniformly sampling a baseband signal in time domain results in a 
periodic spectrum in the frequency domain with a period, fs=1/Ts, where Ts is the 
sampling period in time domain and ≤ 1/2W. 



n d modulated 

 
 

Fig. 1.1c Spectrum of baseband, carrier a carrier signal. 
 
 

 Sampling of Bandpas Signal:
If the spectral range of a signal extends from 10 MHz to 10.1 MHz, the signal may 
ne recovered from samples taken at a frequency fs=2{10.1 - 10} = 0.2 MHz. 
The sampling signal δTs(t) is periodic. So, 

 

δTS = dt/ds + 2.dt/ds(cos2πt/Ts + cos(2.2 πt/Ts) + cos(3.2 πt/Ts) + ……) 
= fsdt + 2fsdt(cos2πfst + cos(2π.2fst) + cos2π.3fst + ……) 

 

 

Fig. 1.2 Spectrum of bandpass and its sampled version signal 



In fig. 1.2 the spectrum of g(t) extends over the first half of the frequency interval 
between harmonics of the sampling frequency, that is, from 2fs to 2.5fs. As a result, 
there is no spectrum overlap, and signal recovery is possible. It may also be seen 
from the figure that if the spectral range of g(t) extends over the second half of the 
interval from 2.5 fs to 3fs, there would similarly be no overlap. Suppose, however 
that the spectrum of g(t) were confined neither to the first half nor to the second 
half of the interval between sampling frequency harmonics. In such a case, there 
would be overlap between the spectrum patterns, and signal recovery would not 
be possible. Hence the minimum sampling frequency allowable is fs=2(fM - fL) 
provided that either fM or fL is a harmonic of fs. 
If neither fM nor fL is a harmonic of fS, a more general analysis is required. In fig 
1.3a, we have reproduced the spectral pattern of fig 1.2. The positive frequency 
part and negative frequency part of the spectrum are called PS and NS 
respectively. Let us , for simplicity, consider separately PS and NS and the manner 
in which they are shifted due to the sampling and let us consider initially what 
constraints must be imposed so that we cause no overlay over, say, PS. The 
product of g(t) and the dc component of the sampling waveform leaves PS 
unmoved, which will be considered to reproduce the original signal. If we select 
the minimum value of fs=2(fm - fL) = 2B, then the shifted Ps patterns will not 
overlap 

 
 

Fig. 1.3 (a) Spectrum of the bandpass signal (b) Spectrum of NS shifted by the (N-1)st and 
the Nth harmonic of the sampling waveform. 

 
PS. The NS will also generate a series of shifted patterns to the left and to the right. 
The left shiftings can not cause an overlap with unmoved PS. However, the right 
shifting of NS might cause an overlap and these right shifting of NS are the only 
possible source of such overlap over PS. Shown in fig. 1.3b, are the right shifted 
patterns of NS due to the (N-1)th and Nth harmonics of the sampling waveform. It 
is clear that to avoid overlap it is necessary that, 

 

(N-1)fs - fL ≤ fL (1.4a) 
and, Nfs - fM ≥ fM (1.4b) 



So that, with B = fM - fL, we have 
(N - 1)fs  ≤ 2(fM - B) (1.4c) 

and, Nfs ≥ 2fM (1.4d) 

If we let k = fM/B, eqn. (1.4c) & (1.4d) become 

fS ≤ 2B(K-1)/(N-1) (1.4e) 

and, fs ≤ 2B(K/N) (1.4f) 

In which k ≥ N, since fs ≥ 2B. Eqn. (1.4e) and (1.4f) establish the constraint which 
must be observed to avoid an overlap on PS. It is clear from the symmetry of the 
initial spectrum and the symmetry of the shiftings required that this same 
constraint assumes the there will be no overlap on NS. Eqn.(1.4e) and (1.4f) has 
been plotted in fig. 1.4 for several values of N. 

Let us take a case where fL=2.5 KHz and fM=3.5 KHz. So, B=1 KHz and K=fM/ = 

3.5. On the plot of fig. 1.4 line for k=3.5 has been erected vertically. For this value 
of k if fs = 2B, then overlapping occurs. If fs is increased in the range of 3.5 to 5 
KHz, then no overlap occurs corresponding to N=2. If fs is 7B or more then no 
overlap occurs. 

 
 

Fig. 1.4 The shaded region are the regions where the constraints eqn. (1.4e) and (1.4f) are 
satisfied. 

 
From this discussion, we can write bandpass sampling theorem as follows---A 
bandpass signal with highest frequency fH and bandwidth B, can be recovered 
from its samples through bandpasss filtering by sampling it with frequency fs=2 
fH/k, where k is the largest integer not exceeding fH/B. All frequencies higher than 
fs but below 2fH(lower limit from low pass sampling theorem) may or may not be 
useful for bandpass sampling depending on overlap of shifted spectrums. 

 
m(t) – low pass signal band limits to fM. 
s(t) – impulse train 



s(t) = Δt/Ts + 2. Δt/Ts(cos2πt/Ts + cos(2.2 πt/Ts) + cos(3.2 πt/Ts) + ……) 
= Δt.fs + 2. Δt.fs(cos2π.fs.t + cos(2.2 π.fs.t) + cos(3.2 π.fs.t) + ……) (1.4g) 

 
Product of m(t) and s(t) si the sampled m(t) ie, ms(t) 
ms(t) = m(t).s(t) 

= Δt/Ts.m(t) + Δt/Ts[2.m(t)cos2π.fs.t + 2.m(t).cos(2π.2.fs.t) + 2.m(t).cos(2 
π.3.fs.t) + ……] (1.4h) 

By using a low pass filter(ideal) with cut-off frequency at fm then Δt/Ts.m(t) will 
be passed so the m(t) can be recovered from the sample. 

Band pass m(t) with lower frequency ‘fL’ & upper frequency ‘fH’, fH - fL = B. The 
minimum sampling frequency allowable is fs = 2(fH - fL) provided that either fH or 
fL is a harmonic of fs. 

A bandpass signal with highest frequency fH and bandwidth B, can be recovered 

from its samples through bandpass filtering by sampling it with frequency fs = 
2.fH/k, where k is the largest integer not exceeding fH/B. All frequencies higher 
than fs but below 2.fH(lower limit from low pass sampling theorem) may or may 
not be useful for bandpass sampling depending on overlap of shifted spectrum. 

Eg. Let us say, fL=2.5 KHz and fH=3.5 KHz. 
So, B=1 KHz, k=fM / B =3.5. 
Selecting fs = 2B = 2 KHz cause overlap. 
If k is taken as 3 then fs = 2*3.5 kHz/3 = 7/3 kHz cause no overlap. 
If k is taken as 2 then fs = 2*3.5 KHz/2 = 3.5 KHz cause no overlap. 

 

 Aliasing Effect:- 

From the spectrum of Gs(f) we can filter out one of the spectrum, say –W<f<W, 
using a low pass filter and can reconstruct the time domain representation of it 
after doing inverse fourier transform of the spectrum. This is possible only when fs 
>= 2W. 
But when fs <2W, ie, Ts > 1/2W, then there will be overlap of adjacent spectrums. 
Here high frequency part of 1st spectrum interfere with low frequency part of 2nd 

spectrum. This phenomenon is the aliasing effect. In such a case the original signal 
g(t) cannot be recovered exactly from its sampled values gs(t). 

 

 Signal Reconstruction : 
 

The process of reconstructing a continuous time signal g(t)[bandlimited to W Hz] 
from its samples is also known as interpolation. This is done by passing the 
sampled signal through an ideal low pass filter of bandwidth W Hz. As seen from 
eqn. 1.4, the sampled signal contains a component 1/Ts G(f), and to recover G(f)[or 
g(t)], the sampled signal must be passed through on ideal low-pass filter of 
bandwidth W hz and gain Ts. 



Ts 

Thus the reconstruction(or interpolating) filter transfer function is, 

H(f) = Ts rect(f/2W) (1.5) 

The interpolation process here is expressed in the frequency domain as a filtering 
operation. 

Let the signal interpolating (reconstruction) filter impulse response be h(t). Thus, if we 
were to pass the sampled signal gr(t) through this filter, its response would be g(t). 

Let us now consider a very simple interpolating filter whose impulse response is 
rect(t/Ts), as shown in fig. 1.5. This is a gate pulse of unit height, cantered at the origin, 
and of width Ts(the sampling interval). Each sample in gδ(t), being an impulse generates a 
gate pulse of the height equal to the strength of the sample. For instance the kth sample is 
an impulse of strength g(kTs) located at t=kTs, and can be expressed as g(kTs) δ(t-kTs). 
When this impulse passes thorugh the filter, it generates and ouput of g(kTs) rect(t/Ts). 

This is a gate pulse of height g(kTs), centred at t=kTs(shown shaded in fig. 1.5). 

Each sample in gδ(t) will generate a corresponding gate pulse resulting in an output, 
 

y(t) = ∑k  g(k.. Ts) rect ( t ) (1.6) 
 

Fig. 1.5 Simple interpolation using zero-order hold circuit 
 

The filter output is a staircase approximation of g(t), shown dotted in fig. 1.5b. This filter 
thus provides a crude form of interpolation. 

The transfer function of this filter H(f) is the fourier transform of the impulse response 
rect(t/Ts). Assuming the Nyquist sampling rate, ie, Ts = 1/2W, 

W(t) = rec(t/Ts) = rect(2Wt) 

and,    H(f) = Ts.sinc(π.f.Ts) = 1/(2W).sinc(πf/2W) (1.7) 

The amplitude response |H(f)| for this filter shown in fig. 1.6, explains the reason for the 
crudeness of this interpolation. This filter is also known as the zero order hold filter, is a 
poor approximation of the ideal low pass filter(as shown double shaded in fig. 1.6). 



 
 

Fig. 1.6 Amplitude response of interpolation filter. 
 

We can improve on the zero order hold filter by using the first order hold filter, which 
results in a linear interpolation instead of the staircase interpolation. The linear 
interpolator, whose impulse response is a triangular pulse Δ(t/2Ts), results in an 
interpolation in which successive sample tops are connected by straight line segments. 
The ideal interpolation filter transfer function found in eqn. 1.5 is shown in fig. 1.7a. The 
impulse response of this filter, the inverse fourier transform of H(f) is, 

h(t) = 2.W.Ts.sinc(Wt), 

Assuming the Nyquist sampling rate, ie, 2WTs = 1, then 

h(t) = sinc(Wt) (1.8) 

This h(t) is shown in fig. 1.7b. 
 

Fig. 1.7 Ideal interpolation. 
 

The very interesting fact we observe is that, h(t) = 0 at all Nyquist sampling instants(t = 
±n/2W) except at t=0. When the sampled signal gδ(t) is applied at the input of this filter, 
the output is g(t). Each sample in gδ(t), being an impulse, generates a sine pulse of height 
equal to the strength of the sample, as shown fig. 1.7c. 



The process is identical to that shown in fig. 1.7b, except that h(t) is a sine pulse instead of 
gate pulse. Addition of the sine pulses generated by all the samples results in g(t). The kth 

sample of the input gδ(t) is the impulse g(kTs)δ(t-kTs); the filter output of this impulse is 
g(kTs)h(t-kTs). Hence, the filter output to gδ(t), which is g(t), can now be expressed as a 
sum. 

g(t) = ∑k g(k. Ts) h(t — KTs) 

= ∑k g(k. Ts) sinc[W(t — KTs)] (1.9a) 

= ∑k g(k. Ts) sinc[Wt — K/2] (1.9b) 

Eqn. 1.9 is the interpolation formula, which yields values of g(t) between samples as a 
weighted sum of all the sample values. 

 

 Practical Difficulties:
If a signal is sampled at the Nyquist rate fs = 2W hz, the spectrum Gδ(f) without 
any gap between successive cycles.. To recover g(t) from gδ(t), we need to pass the 
sampled signal gδ(t) through an ideal low pass filter. Such filter is unrealizable; it 
can be closely approximated only with infinite time delay in the response. This 
means that we can recover the signal g(t) from its samples with infinite time delay. 
A practical solution to this problem is to sample the signal at a rate higher h=than 
the Nyquist rate(fs > 2W). This yields Gδ(f), consisting of repetition of G(t) with a 
finite band gap between successive cycles. We can now recover G(g) from Gδ(f) 
from Gδ(f) using a low pass filter with a gradual cut-off characteristics. But even in 
this case, the filter gain is required to be zero beyond the first cycle of G(f). By 
Paley-Wiener criterion, it is also impossible to realize even this filter. The only 
advantage in this case is that the required filter can be closely approximated with a 
smaller time delay. 
This indicated that it is impossible in practice to recover a band limited signal gδ(t) 
exactly from its samples even if sampling rate is higher than the Nyquist rate. 
However as the sampling rate increases, the recovered signal approaches the 
desired signal more closely. 

 

 The Treachery of Aliasing:
There is another fundamental practical difficulty in reconstructing a signal from its 
samples. The sampling theorem was proved on the assumption that the signal g(t) 
is bandlimited. All practical signals are time limited, ie, they are of finite duration 
width. A signal cannot be time-limited and band-limited simultaneously. If a 
signal is time limited, it cannot be band limited and vice-versa(but it can be 
simultaneously non time limited and non band limited). This means that all 
practical signals which are time limited are non band limited; they have infinite 
bandwidth and the spectrum Gδ(f) consists of overlapping cycles of G(f) repeating 
every fs hz(the sampling frequency) as shown in fig. 1.8. 



 
Fig. 1.8   Aliasing effect 

 
 

Because of the overlapping tails, Gδ(f) no longer has complete information about 
G(f) and it is no longer possible even theoretically to recover g(t) from the sampled 
signal gδ(t). If the sampled signal is passed through and ideal low pass filter the 
output is not G(f) but a version of G(f) distorted as a result of two separate causes: 
1. The loss of the tail of G(f) beyond |f| > fs/2 Hz. 
2. The reappearance of this tail inverted or folded onto the spectrum. 

The spectra cross at frequency fs/2 = 1/2Ts Hz, is called the folding frequency. The 
spectrum, therefore, folds onto itself at the folding frequency. In fig. 1.8, the 
components of frequencies above fs/2 reappear as components of frequencies 
below fs/2. This tail inversion, known as spectral folding or aliasing is shown 
shaded in fig. 1.8. In this process of aliasing, we are not only losing all the 
components of frequencies above fs/2 Hz, but these very components 
reappear(aliased) as lower frequency components also as in fig. 1.8. 

 

 A Solution: The Antialiasing Filter
The potential defectors are all the frequency components beyond fs/2 = 1/2Ts Hz. 
We should eliminate (suppress) these components from g(t) before sampling g(t). 
This way, we lose only the components beyond the folding frequency fs/2 Hz. 
These components now cannot reappear to corrupt the components with 
frequencies below the folding frequency. This suppression of higher frequencies 
can be accomplished by an ideal low pass filtr of bandwidth fs/2 hz. This filter is 
called the antialiasing filter. This antialiasing operation must be performed before 
the signal is sampled. 
The antialiasing filter, being an ideal filter, is unrealizable. In practice we use a 
steep cut off filter which leaves a sharply attenuated residual spectrum beyond the 
folding frequency fδ/2. 
Even using antialiasing filter, the original signal may not be recovered if Ts > 
1/2W, ie, fs < 2W. For this case also aliasing will occur. To avoid this sampling 
frequency fs should be always greater than or atleast equal to 2W, where W is the 

highest frequency component available in information signal. 
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 Some Applications of the Sampling Theorem:
In the field of digital communication the transmission of a continuous time 
message is replaced by the transmission of a sequence of numbers. These open 
doors to many new techniques of communicating continuous time signals by pulse 
trains. The continuous time signal g(t) is sampled, and samples values are used to 
modify certain parameters of a periodic pulse train. As per these parameters, we 
have pulse amplitude modulation (PAM), pulse width modulation (PWM) and 
pulse position modulation (PPM). In all these cases instead of transmitting g(t), we 
transmit the corresponding pulse modulated signal. One advantage of using pulse 
modulation is that it permits the simultaneous transmission of several signals on a 
time sharing basis-time division multiplexing (TDM) which is the dual of FDM. 

 

 Pulse Amplitude Modulation(PAM) :
In PAM, the amplitude of regularly spaced rectangular pulses vary with the 
instantaneous sample value of a continuous message signal in one to one fashion. 

 

VPAM(t) = Σœ [1 + Ka. g(n. Ts)]δ(t — n. Ts) 
 

Where g(nTS) represents the nth sample of the message signal g(t), Ts is the 
sampling time, ka is a constant called the amplitude sensitivity(or modulation 
index of PAM) and δTS(t) demotes the pulse train. ‘ka’ is chosen so as to maintain a 
single polarity, ie, {1+kag(nTs)} > 0 for all values of g(nTs). 
Different forms of pulse analog modulation (PAM, PWM & PPM) are illustrated 
below:- 

 

Fig. 1.9 Pulse modulated signals. 



Transmission BW in PAM 

We know  << Ts ≤ 1/2W 
Considering ‘ON’ and ‘OFF’ time of PAM it is velar the maximum 

frequency of PAM is fmax = 1/2 . 
So transmission BW ≥ fmax = 1/2  >> W. 
Noise performance of PAM is never better than the baseband signal 

transmission. 
However we need PAM for message processing for a TDM system, from 

which PCM can be easily generated or other form of pulse modulation can be 
generated. 

Be it single or multi user system the detection should be done in 
synchronism. So synchronization between transmitter and receiver is an important 
requirement. 

 
 

 Pusle Width Modulation(PWM):
In pulse width modulation, the instantaneous sample values of the message signal 
are used to vary the duration of the individual pulses. This form of modulation is 
also referred to as pulse duration modulation (PDM) or pulse length modulation 
(PLM). 
Here the modulating wave may vary the time of occurrence of leading edge, the 
trailing edge or both edges of the pulse. 

 
Disadvantage – In PWM, long pulses (more width) expand considerable power 
during the pulse transmission while bearing no additional information. 

 
VPWM = P(t – n.Ts) = ð(t — n. Ts) for nTs € t € (nTs + kn. g(nTs)) 

= 0 for [nTs + kw.g(nTS)]≤ t ≤(n+1)Ts 

 
 

 Generation of PWM and PPM waves:
 

The figure below depicts the generation of PWM and PPM waves. Hence for the 
PWM wave the trailing edge is varied according to the sample value of the 
message. 



 
Fig. 1.10 Principle of PWM and PPM generation. 

 

The saw tooth generator generates the sawtooth signal of frequency fs (fs = 1/Ts). If 
sawtooth waveform is reversed, then leading edge of the pulse will be varied with 
samples of the signal and if the sawtooth waveform is replaced by a triangular 
waveform then both the edged will vary according to samples. 
PPM waveform is generated when PWM wave is used as the trigger input to a 
monostable multivibrator. The monostable multivibrator is triggered on the falling 
(trailing edge) of PWM. The output of monostable is then switches to positive 
saturation value and remain there for a fixed period and then goes low. Thus a 
pulse is generated which occurs at a time which occurs at a time which depends 
upon the amplitude of the sampled value. 

Demodulation of PWM waves 
 
 

 

Fig. 1.10a A PWM demodulator circuit. 



u 

Here transistor T1 acts as an inverter. Hence when transfer is off capacitor C1 will chase 
through R as when it is ‘on’ C1 discharges quickly through T1 as the resistance in the 
path is very small. This produces a sawtooth wave at the output of T2. This sawtooth 
wave when passed through an op-amp with 2nd order LPF produces the desired wave at 
the output. 

 
 

 

Demodulation of PPM waves: 

Since in PPM the gaps in between pulses contains information, so during the gaps, say 
OA, BC and DE the transfer T remains off and capacitor the capacitor C gets charged. The 
voltage across the capacitor depends on time of charging as the value of R and C. Rest of 
the operation is same as above. 

 

Fig. 1.10b A PPM demod lator circuit. 



MODULE – II 12 hours 
 

PCM is the most useful and widely used of all the pulse modulations mentioned. Basically, PCM is 

a method of converting an analog signal into a digital signal (A/D conversion).An analog signal is 

characterized by the fact that its amplitude can take on any value over a continuous range. This 

means that it can take on an infinite number of values. On the other hand, digital signal amplitude 

can take on only a finite number of values. An analog signal can be converted into a digital signal 

by means of sampling and quantizing, that is, rounding off its 

permissible numbers (or quantized levels) as shown in fig 2.1. 

value to one of the closest 

 

 

 

 
 

Fig. 2.1 Quantization of a sampled analog signal. 
 
 

Quantization is of two types:--uniform and non-uniform quantization. 

 Uniform Quantization :--
Amplitude quantizing is the task of mapping samples of a continuous amplitude waveform 

to a finite set of amplitudes. The hardware that performs the mapping is the analog-to- 

digital converter (ADC or A-to-D). The amplitude quantizing occurs after the sample-and- 

hold operation. The simplest quantizer to visualize performs an instantaneous mapping 

from each continuous input sample level to one of the preassigned equally spaced output 

levels. Quantizers that exhibit equally spaced increments between possible quantized 
output levels are called uniform or linear quantizers. 

Possible instantaneous input-output characteristics are easily visualized by a simple 

staircase graph consisting of risers and treads of the types shown in Fig 2.2. Fig 2.2 a, b, 

and d show quantizers with uniform quantizing steps, while fig 2.2c is a quantizer with 

nonuniform quantizing steps. 



 

Fig. 2.2 Various quantizers transfer functions. 

 Non Uniform Quantization:
For many classes of signals the uniform quantization is not efficient, for example, 
in speech communication it is found(statistically) that smaller amplitudes 
predominate in speech and that larger amplitudes are relatively rare. The uniform 
quantizing scheme is thus wasteful for speech signals; many of the quantizing 
levels are rarely used. An efficient scheme is to employ a non uniform quantizing 
method in which smaller steps for small amplitudes are used. 

 
 

Fig. 2.3. Non-uniform quantization 



The same result can be achieved by first compressing the signal samples and then 
using a uniform quantizing. The input-output characteristics of a compressor are 
shown in below fig. 2.4 

 
The same result can be achieved by first compressing the signal samples and then 

using a uniform quantizing. The input output characteristics of a compressor are 

shown in fig. The horizontal axis is the normalized input signal (ie, g/gp), and the 

vertical axis is the output signal y. The compressor maps input signal increment 

Δg, into larger increment Δy for small signal input signals and small increments 

for larger input signals. Hence, by applying the compressed signals to a uniform 

quantizer a given interval Δg contains a larger no. of steps (or smaller step-size) 

when g is small. 

 

Fig. 2.4 Characteristics of Compressor. 

 
A particular form of compression law that is used in practice (in North America 
and Japan) in the so called µ law (µ law compressor), defined by 

y = ln(1 + µ|g/gp|)/ln(1 + µ).sgn(g) for |g/gp|≤1 where, µ is a +ve constant 
and sgn(g) is a signum function. 

Another compression law popular in Europe is the so A-law, defined by, 

y = A/(1+lnA).(g/gp) for 0 ≤ g/gp ≤1/A 

= (1+lnA|g/gp|/(1+lnA)).sgn(g) for 1/A≤|g/gp|≤1 (2.1) 
 

The values of µ & A are selected to obtain a nearby constant output signal to 
quantizing noise ratio over an input signal power dynamic range of 40 dB. 
To restore the signal samples to their correct relative level, an expander with a 
characteristic complementary to that of compressor is used in the receiver. The 
combination of compression and expansion is called companding. 



 Encoding:-
 

 

 

Fig. 2.5 Representation of each sample by its quantized value and binary representation. 

 

A signal g(t) bandlimited to B hz is sampled by a periodic pulse train PTs(t) made up of a 
rectangular pulse of width 1/8B seconds (cantered at origin), amplitude 1 unit repeating 
at the Nyquist rate(2B pulses per second. Show that the sampled signal is given by, 

 

 
g¯(t) = ¼.g(t) + 
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(2.2) 

 

 Quantizing Noise or Quantizing Error :
We assume that the amplitude of g(t) is confined to the range(-gp, gp). This range is 
divided into L no. of equal segments. Each segment is having step size Δ, given by, 

 
Δ = 2.gp/L (2.3) 

 
A sample amplitude value is approximated by the mid-points of the interval in 
which it lies. The input-output characteristic of a midrise uniform quantizer is 
shown in fig. 
The difference between the input and output signals of the quantizer becomes the 
quantizing error or quantizing noise. 
It is apparent that with a random input signal, the quantizing error ‘qe’ varies 
randomly within the interval, 

 

–Δ/2 ≤ qe ≤ Δ/2 (2.4) 



–g 2 

Assuming that the error is equally likely to lie anywhere in the range (-Δ/2, Δ/2), 
the mean square quantizing error <q2e> in given by, 

 

A 
<q2e> = 1/Δf2 q2dq 

 
= Δ2/12 (2.5) 

A    e e 
2 

 

Substituting eqn.(2.3) in eqn.(2.5) we get, 
 

 

<q2e> = g2p/(3L2) 

 
Si = <g2(t)> = fgp

 
p 

 

g2(t) . 1 . g.dg = g2p/3 

 
 

 Transmission Bandwidth and the output SNR :
For binary PCM, we assign a distinct group of ‘n’ binary digits(bits) to each of the 
L quantization levels. Because a sequence of n binary digits can be arranged in 2n 

distinct patterns, 
 

L = 2n  or n = log2L (2.6) 
 

Each quantized sample is thus, encoded into ‘n’ bits. Because a signal g(t) 
bandlimited to W Hz requires a minimum of 2W samples second, we require a 
total of 2nW bits per second(bps), ie, 2nW pieces of information per second. 
Because a unit bandwidth (1 Hz) can transmit a maximum of two pieces of 
information per second, we require a minimum channel of bandwidth BT Hz, 
given by, 

 
BT = n.W Hz (2.7) 

 
This is the theoretical minimum transmission bandwidth required to transmit the 
PCM signal. We shall see that for practical reasons we may use transmission 
bandwidth higher than as in eqn.(2.7). 

 
Quantizing Noise = No = <q2e> = g2p/(3.L2) (2.8) 

 
Assuming the pulse detection error at the receiver is negligible, the reconstructed 
signal ĝ (t) at the receiver output is, 

 
ĝ (t) = g(t) + qe(t) (2.9) 

 
The desired signal at the output is g(t), and the (quantizing) noise is qe(t). Since the 
power of the message signal g(t) is <g2(t)>, then 

 

S0 = <g2(t)> (2.10) 

– 



So, SNR = So/No = <g2(t)>/( g2p/(3.L2)) = 3L2 < g2(t)>/ g2p 

(2.11) 
 

So/No(dB) = 10.log(3L2) < g2(t)>/ g2p 

Signal to noise ration can be written as, 

So/No  = 3.2(2n)  < g2(t)>/ g2p (2.12) 
 

 
Where, 

= C(2)2n (2.13) 
 

C = 3.< g2(t) >/ g2p (uncompressed case, as in eqn.(2.12)) 
= 3/[ln(1+µ)]2 (compressed case) 

 

For a µ-law compander, the output SNR is, 
So/No = 3.l2/[ln(1+µ)]2 µ2 >> g2p/<g2(t)> 

Substituting eqn.(2.7) in eqn.(2.12), we find 

So/No = C(2)2.BT/W (2.14) 

From eqn.(2.14), it is observed that SNR increases almost exponentially with the 
transmission bandwidth BT. This trade-off SNR with bandwidth is attractive and come 
close to the upper theoretical limit. A small increase in bandwidth yields a large benefit in 
terms of SNR. This trade relationship is clearly seen by rewriting eqn.(2.14) using decibel 
scale as, 

S0/N0 (dB) = 10.log(So/No) 

= 10log(C22n) 

= 10logC + 20log2 

= (α + 6n) dB (2.15) 

Where, α = 10logC. This shows that increasing n by 1, quadruples the output SNR(6 dB 
increase). Thus if we increase ‘n’ from 8 to 9, the SNR quadruples, but the transmission 
bandwidth increases only from 32 to 36 Khz(an increase of only 12.5%). This shows that 
in PCM, SNR can be controlled by transmission bandwidth. We shall see later that 
frequency and phase modulation also do this. But it requires a doubling of the bandwidth 
to quadruple the SNR. In this respect, PCM is strikingly superior to FM or PM. 

 Digital Multiplexer :--

This is a device which multiplexers or combines several low bit rate signals to form one 
high bit rate signal to be transmitted over a high frequency medium. Because of the 
medium is time shared by various incoming signals, this is a case of time-division 



multiplexing (TDM. The signals from various incoming channels may be such diverse 
nature as digitized voice signal (PCM), a computer output, telemetry data, a digital 
facsimile and so on. The bit rates of the various tributaries (channels) need not be the 
same. 
Multiplexing can be done on a bit-by-bit basis(known as bit or digit interleaving) or on a 
word-by-word basis(known as byte or word interleaving). The third category is 
interleaving channel having different bit rate. 

T1 carrier system:-- The input to the (fast) 13-bit ADC comes from an analog 
multiplexer. The digital processor compresses the digital value according to μ-law. 

 

Fig. 2.6 T-1 carrier system. 
 

The 8-bit compressed voice values are sent consecutively, MSB first. The samples of all 
24 inputs comprise a frame. Most serial communications transmits data LSB first 
(“little endian”). 



 Synchronizing & Signalling :

Binary code words corresponding to samples of each of the 24 channels are 

multiplexed in a sequence as shown in fig 2.7. A segment containing one 
codeword (corresponding to one sample) from each of the 24 channels is called a 
frame. Each frame has 24x8 = 192 information bits. Because the sampling rate is 
8000 samples per second, each frame takes 125 µs. At the receiver it is necessary to 
be sure where each frame begins in order to separate information bits separately. 
For this purpose, s framing bit is added at the beginning of each frame. This makes 
a total of 193 bits per frame. Framing bits are chosen so that a sequence of framing 
bits, one at the beginning of each frame, forms a special pattern that is unlikely to 
be formed in a speech channel. 

 

Fig. 2.7 T-1 frame. 
 

The sequence formed by the first bit from each frame is examined by the logic of 
the receiving terminal. If this sequence does not follow the given coded pattern 
(framing bit pattern), then a synchronization lost is detected and the next position 
is examined to determine whether it is actually the framing bit. It takes about 0.4 to 
6 ms to detect and about 50 ms (in the worst possible case) to reframe. 

In addition to information and framing bits we need to transmit signalling bits 
corresponding to dialling pulses, as well as telephone on-hook/off-hook signals. 
When channels developed by this system are used to transmit signals between 
telephone switching systems, the switches must be able to communicate with each 
other to use the channels effectively. Since all eight bits are now used for 
transmission instead of the seven bits used in the earlier version, the signalling 
channel provided by the eighth bit is no longer available. Since only a rather low 
speed signalling channel is required, rather than create extra time slots for this 
information we use one information bit(the least significant bit) of every sixth 
sample of a signal to transmit this information. This means every sixth sample of 
each voice signal will have a possible error corresponding to the least significant 
digit. Every sixth frame, therefore, has 7x24 = 168 information bits, 24 signalling 
bits and 1 framing bit. In all the remaining frames, there are 192 information bits 



and 1 framing bit. This technique is called 75/6 bit encoding and the signalling 
channel so derived is called robbed-bit signalling. The slight SNR degradation 
suffered by impairing one out of six frame is considered to be an acceptable 
penalty. The signalling bits for each signal occur at a rate of 8000/6 = 1333  
bits/sec. 

In such above case detection of boundary of frames is important. A new framing 
structure called the super frame was developed to take care of this. The framing 
bits are transmitted at the 8 kbps rate as before (earlier case) and occupy the first 
bit of each frame. The framing bits form a special pattern which repeats in twelve 
frames: 100011011100. The pattern thus allows the identification of frame 
boundaries as before, but also allows the determination of the locations of the sixth 
and twelfth frames within the superframe. Since two signalling frames are used so 
two specific job can be initiated. The odd numbered frames are used for frame and 
sample synchronization and the even numbered frames are used to identify the A 

& B channel signalling frames(frames 6 & 12). 

A new superframe structure called the extended superframe (ESF) format was 
introduced during 1970s to take advantage of the reduced framing bandwidth 
requirement. An ESG is 24 frames in length and carries signalling bits in the eighth 
bit of each channel in frames 6, 12, 18 and 24. Sixteen state signalling is thus 
possible. Out of 24 framing bits 4th, 8th, 12th, 16th, 20th and 24th(2 kbps) are used for 
frame synchronization and have a bit sequence 001011. Framing bits 1, 5, 9, 13, 17 
and 21(2 kbps) are for error detection code. 12 remaining bits are for management 
purpose and called as facility data link(FDL). The function of signalling is also the 
common channel interoffice signalling (CCIS). 

 
 

Differential Pulse Code Modulation : 

In analog messages we can make a good guess about a sample value from a 
knowledge of the past sample values. In other words, the sample values are not 
independent and there is a great deal of redundancy in the Nyquist samples. 
Proper exploitation of this redundancy leads to encoding a signal with a lesser 
number of bits. Consider a simple scheme where instead of transmitting the 
sample values, we transmit the difference between the successive sample values. 

If g[k] is the kth sample instead of transmitting g[k], we transmit the difference 

d[k] = g[k] – g[k-1]. At the receiver, knowing the d[k] and the sample value g[k-1], 
we can construct g[k]. Thus form the knowledge of the difference d[k], we can 
reconstruct g[k] iteratively at he receiver. Now the difference between successive 
samples is generally much smaller than the sample values. Thus peak amplitude, 
gp of the transmitted values is reduced considerably. Because the quantization 
interval Δ = gp/L, for a given L(or n) this reduces the quantization interval Δ. 
Thus, reducing the quantization noise which is given by Δ2/12. 



This means that for a given n(or transmission bandwidth), we can increase the 
SNR or for a given SNR we can reduce n(or transmission bandwidth). 

We can improve upon scheme by estimating the value of the kth sample g[k] from 
knowledge of the previous sample values. If this estimate is ĝ[k], then we transmit 
the  difference  (prediction  error)  d[k]  =  g[k]  –  ĝ[k].  At  the  receiver  also  we 
determine  the  estimate  ĝ[k]  from  the  previous  sample  values  and  then  generate 
g[k]  by  adding  the  received  d[k]  to  the  estimate  ĝ[k].  Thus  we  reconstruct  the 
samples at the receiver iteratively. If our prediction is worthful the predicted value 
ĝ[k]will  be  close  to  g[k]  and  their  difference  (prediction  error)  d[k]  will  be  even 
smaller than the difference between the successive samples. Consequently this 
scheme known as the differential PCM(DPCM) is superior to that described in the 
previous paragraph which is a special case of DPCM, where the estimate of a 
sample value is taken as the previous sample value, ie, ĝ[k]=g[k-1]. 

Consider for example a signal g(t) which has derivative of all orders at ‘t’. Using 

Taylor series for this signal, we can express g(t+Ts) s, 

g(t+Ts) = g(t) + Ts.g˙(t) + T2s/2! g¨ (t) + …… (2.16) 

= g(t) + Ts.g˙(t) for small Ts. (2.17) 

So from eqn.(2.16) it is clear a future signal can be predicted from the present 
signal and its all derivatives. Even if we know the first derivative we can predict 
the approximated signal. 

Let us denote the kth sample of g(t0 by g[k], ie, g[kTs] =g[k] and g(kTs ± Ts) = g[k ± 
1] and so on. Setting t=kTs in eqn.(2.17) and recognizing g(kTs) ≈ [g(kTs) – g(kTs – 

Ts)]/Ts. 

We obtain, 

g[k+1] ≈ g[k] + Ts[{g[k] – g[k-1}/Ts]] 

= 2g[k] – g[k-1] (2.18) 

This shows that we can find a crude prediction of the (k+1)th sample from two 
previous samples. The approximation in eqn.(2.17) improves as we add more 
terms in the series on the right hand side. To determine the higher order 
derivatives in the series, we require more samples in the past. The larger the 
member of past samples we use, the better will be the prediction. Thus, in general 
we can express the prediction formula as, 

g[k] ≈ a1g[k-1] + a2g[k-2]+……….+ aNg[k-N] (2.19) 

The right hand side of eqn.(2.19), is , ĝ[k, the predicted value of g[k]. Thus, 

ĝ[k] = a1g[k-1] + a2g[k-2]+……….+ aNg[k-N] (2.20) 



This is the eqn. of an Nth order predictor. Larger n would result in better 
prediction  in  general.  The  output  of  this  filter  (predictor)  is  ĝ[k],  the  predicted 
value of g[k]. the input is the previous samples g[k-1], g[k-2],……,g[k-n], although 
it is customary to say that the input is g[k] and the output is ĝ[k]. 

Eqn.(2.20)  reduces  to  ĝ[k]  =  g[k-1]  for  the  1st   order  predictor.  This  is  similar  to 
eqn.(2.17). This means a1 = 1 and the 1at order predictor is a simple time delay. 

The predictor described in eqn.(2.20) is called a linear predictor. It is basically a 
transversal filter(a tapped delay line), where the tap gains are set equal to the 
prediction coefficients as shown in fig. 2.8. 

 

Fig. 2.8 Transversal filter(tapped delay line) used as a liner predictor 

 

 
 Analysis of DPCM :

As mentioned earlier, in DPCM we transmit not the present sample g[k] but 
d[k] (the difference between  g[k] and its predicted value ĝ[k]). At the receiver, 
we  generate  ĝ[k]  from  the  past  sample  values  to  which  the  received  d[k]  is 
added to generate g[k]. There is, however, one difficulty in this scheme. At the 
receiver, instead of the past samples g[k-1], g[k-2],……. as well as d[k], we have 
their quantized versions gp[k-1], gp[k-2],….. Hence, we cannot determine ĝ[k]. 
We can only determine gp[k], the estimate of the quantized sample gq[k] in 
terms of the quantized samples gq[k-1], gq[k-2],………. This will increase the 
error in reconstruction. In such a case, a better strategy is to determine ĝq[k], 
the estimate of gq[k](instead of g[k]), at the transmitter also from the quantized 
samples gq[k-1], gq[k-2],………. The difference d[k] = g[k] - gq[k-2],……. is now 
transmitted  using  PCM.  At  the  receiver  we  can  generate  ĝq[k],  and  from  the 
received d[k], we can reconstruct gq[k]. 
Fig 2.9 shows a DPCM transmitter. We shall soon see that the predictor input is 
gq[k]. Naturally its output is ĝq[k], the predicted value of gq[k]. The difference, 

 

d[k] = g[k] - ĝq[k] (2.21) 
 

is quantized to yield 



dq[k] = d[k] + q[k] (2.22) 
 
 

 
Fig. 2.9 DPCM system—Tansmitter and Receriver 

 

In  eqn.(2.22)  q[k]  is  the  quantization  error.  The  predictor  output  ĝq[k]  is  fed 
back to its input so that the predictor input gq[k] is, 

 

gq[k] = ĝq[k] + dq[k] 
= g[k] – d[k] + dq[k] 
= g[k] + q[k] (2.23) 

 
This shows that gq[k] is a quantized version of g[k]. The predictor input is 
indeed gq[k] as assumed. The quantized signal dq[k] is now transmitted over 
the channel. The receiver shown in fig 2.9 is identical to the shaded portion of 
the transmitter. The input in both cases is also the same, viz., dq[k]. Therefore, 
the  predictor  output  must  be  ĝq[k]  (the  same  as  the  predictor  output  at  the 
transmitter). Hence, the receiver output (which is the predictor input) is also 
the same, viz., gq[k] = g[k] + q[k], as found in eqn.(2.23). This shows that we are 
able to receive the desired signal g[k] plus the quantization noise q[k]. This is 
the quantization noise associated with the difference signal d[k], which is much 
smaller than g[k]. The received samples are decoded and passed through a low 
pass filter of D/A conversion. 

 
 SNR Improvement :

To determine the improvement in DPCM over PCM, let gp and dp be the peak 
amplitudes of g(t) and d(t). If we use the same value of ‘L’ in both cases, the 
quantization step Δ in DPCM is reduced by the factor gp/dp. Because the 
quantization noise power is Δ2/12, the quantization noise in DPCM reduced by 
the factor (gp/dp)2 and the SNR increases by the same factor. Moreover, the 
signal power is proportional to its peak value squared (assuming other 
statistical properties invariant). Therefore, Gp(SNR improvement due to 
prediction) is 

 

Gp = Pg/Pd (2.24) 



Where Pg and Pd are the powers of g(t) and d(t) respectively. In terms of dB 
units, this means that the SNR increases by 10log(Pm/Pd) dB. 
For PCM, 

 
(S0/N0) = α + Gn where, α = 10logC (2.25) 

 
In case of PCM the value of α is higher by 10log(Pg/Pd) dB. A second order 
predictor processor for speech signals can provide the SNR improvement of 
around 5.6 dB. In practice, the SNR improvement may be as high as 25 dB. 
Alternately, for the same SNR, the bit rate for DPCM could be lower than that 
for PCM by 3 to 4 bits per sample. Thus telephone systems using DPCM can 
often operate at 32 kbits/s or even 24 kbits/s. 

 

 Delta Modulation:
Sample correlation used in DPCM is further exploited in delta modulation(DM) 
by oversampling(typically 4 times the Nyquist rate) the baseband signal. This 
increases the correlation between adjacent samples, which results in a small 
prediction error that can be encoded using only one bit (L=2) for quantization 
of the g[k] – ĝq[k]. In comparison to PCM even DPCM, it us very simple and 
inexpensive method of A/D conversion. A 1-bit code word in DM makes word 
framing unnecessary at the transmitter and the receiver. This strategy allows us 
to use fewer bits per sample for encoding a baseband signal. 

 

 

 
Fig. 2.10 Delta Modulation is a special case of DPCM 

 

In DM, we use a first order predictor which as seen earlier is just a time delay 
of Ts(the sampling interval). Thus, the DM transmitter (modulator) and the 

receiver (demodulator) are identical to those of the DPCM in fig2.9 with a time 
delay for the predictor as shown in fig 2.10. From this figure, we obtain, 

 
ĝq[k] = gq[k-1] +  dq[k] (2.26) 

 
Hence, gq[k-1] = gq[k-2] + dq[k-1] (2.27) 

Substituting eqn.(2.27) into eqn.(2.26) yields 



g=O 

gq[k] = gq[k-2] + dq[k] + dq[k-1] (2.28) 
 

Proceeding iteratively in this manner and assuming zero initial condition, ie, 
gq[0] = 0, yields, 

 

gq[k] = ∑k
 dq[g] (2.29) 

 

This shows that the receiver(demodulator) is just an accumulator(adder). If the 
output dq=[k] is represented by an integrator because its output is the sum of 
the strengths of the input impulses(sum of the areas under the impulses). We 
may also replace the feedback portion of the modulator (which is identical to 
the demodulator) by an integrator. The demodulator output is gp[k], which 
when passed through a low pass filter yields the desired signal reconstructed 
from the quantized samples. 

 
 

 

Fig. 2.11 Delta Modulation 



Fig 2.11 shows a practical implementation of the delta modulator and 
demodulator. As discussed earlier, the first order predictor is replaced by a low 
cost integrator circuit (such as and RC integrator). The modulator consists of a 
comparator and a sampler in the direct path and an integrator amplifier n the 
feedback path. Let us see how this delta modulator works. 
The analog signal g(t) is compared with the feedback signal(which served as a 
predicted  signal)  ĝq[k].  The  error  signal  d(t)  =  g(t)  –  ĝq[k]  is  applied  to  a 
comparator. If d(t) is +ve, the comparator output is a constant signal of 
amplitude E, and if d(t) is –ve, the comparator output is –E. Thus, the 
difference is a binary signal [L = 2] that is needed to generate a 1-bit DPCM. 
The comparator output is sampled by a sampler at a rate of fs samples per 
second. The sampler thus produces a train of narrow pulses dq[k] with a 
positive  pulse  when  g(t)> ĝq[k]    and  a  negative  pulse  when  g(t)< ĝq[k].  The 
pulse train dq(t) is the delta modulated pulse train. The modulated signal dq(t) 
is amplified and integrated in the feedback path to generate ĝq[k] which tries to 
follow g(t). 
To understand how this works we note that each pulse in dq[k] at the input of 
the integrator gives rise to a step function (positive or negative depending on 
pulse polarity) in ĝq[k]. If, eg, g(t) > ĝq[k], a positive pulse is generated in dq[k], 
which  gives  rise  to  a  positive  step  in  ĝq[k],  trying  to  equalize  ĝq[k]  to  g(t)  in 
small steps at every sampling instant as shown in fig 2.11. It can be seen that 
ĝq[k]  is  a  kind  of  staircase  approximation  of  g(t).  The  demodulator  at  the 
receiver consists of an amplifier integrator (identical to that in the feedback 
path of the modulator) followed by a low pass filter. 

 

 DM transmits the derivative of g(t)
In DM, the modulated signal carries information not about the signal samples 
but about the difference between successive samples. If the difference is 
positive or negative a positive or negative pulse (respectively) is generated in 
the modulated signal dq[k]. Basically, therefore, DM carries the information 
about the derivative of g(t) and , hence, the name delta modulation. This can 

also be seen from the face that integration of the delta modulated signal yields 
gq(t), which is an approximation of g(t). 

 
 Threshold of coding and overloading

Threshold and overloading effects can be clearly seen in fig 2.11c. Variation in 
g(t) smaller than the step value(threshold coding) are lost in DM. Moreover, if 
g(t)  changes  too  fast  ie,  ĝq[k]  is  too  high,  ĝq[k]  cannot  follow  g(t),  and 
overloading occurs. This is the so called slope overload which gives rise to 
slope overload noise. This noise is one of the basic limiting factors in the 
performance of DM. We should expect slope overload rather than amplitude 
overload in DM, because DM basically carries the information about ĝq[k]. The 
granular nature of the output signal gives rise to the granular noise similar to 
the quantization noise. The slope overload noise can be reduced by increasing 
the step size Δ. This unfortunately increases granular noise. There is an 



optimum value of Δ, which yields the best compromise giving the minimum 
overall noise. This optimum value of Δ depends on the sampling frequency fs 
and the nature of the signal. 
The slope overload occurs when ĝq[k] cannot follow g(t). During the sampling 
interval Ts, ĝq[k] is capable of changing by Δ, where Δ is the height of the step 
Hence, the maximum slope that ĝq[k] can follow is Δ/Ts=, or Δfs, where fs is the 
sampling frequency. Hence, no overload occurs if 

 

|g˙(t)| < Δfs (2.30) 
 

Consider the case of a single tone modulation, 

ie, g(t) = A.cos(wt) 

 
The condition for no overload is 

 
|g˙(t)|max = wA < Δfs (2.31) 

 
Hence, the maximum amplitude ‘Amax’ of this signal that can be tolerated 
without overload is given by 

Amax = Δfs/W (2.32) 
The overload amplitude of the modulating signal is inversely proportional to 
the frequency W. For higher modulating frequencies, the overload occurs for 
smaller amplitudes. For voice signals, which contain all frequency components 
up to(say) 4 KHz, calculating Amax by using W = 2.pi.4000 in eqn.(2.32) will  
give an overly conservative value. It has been shown by De Jager that ‘Amax’ for 
voice signals can be calculated by using Wr = 2.pi.800 in eqn.(2.32), 

[Amax]voice ≈ Δfs/wr (2.33) 

Thus, the maximum voice signal amplitude ‘Amax’ that can be used without 
causing slope overload in DM is the same as the maximum amplitude of a 
sinusoidal signal of reference frequency fr(fr = 800 Hz) that can be used without 
causing slope overload in the same system. 



 

Fig. 2.12 Voice Signal Spectrum 

 
Fortunately, the voice spectrum (as well as the TV video signal) also decays 

with frequency and closely follows the overload characteristics (curve c, fig 
2.11). For this reason, DM is well suited for voice (and TV) signals. Actually,  
the voice signal spectrum (curve b) decrease as 1/W upto 2000 Hz, land 
beyond this frequency, it decreases as 1/W2. Hence, a better match between the 
voice spectrum and the overload characteristics is achieved by using a single 
integration up to 2000 Hz and a double interaction beyond 2000 Hz. Such a 
circuit (the double integration) is fast responding, but has a tendency to 
instability, which can be reduced by using some lower order prediction along 
with double integration. The double integrator can be built by placing in 
cascade tow low pass RC integrators with the time constant R1C1 = 1/2000.pi 
and R2C2 = 1/4000.pi, respectively. This result in single integration from 100 Hz 
to 2000 Hz and double integration beyond 2000 Hz. 

 

 Adaptive Delta Modulation
The DM discussed so far suffers from one serious disadvantage. The dynamic 
range of amplitudes is too small because of the threshold and overload effects 
discussed earlier. To correct this problem, some type of signal compression is 
necessary. In DM a suitable method appears to be the adaptation of the step 
value ‘Δ’ according to the level of the input signal derivative. For example in 
fig.2.11c when the signal g(t) is falling rapidly, slope overload occurs. If we can 
increase the step size during this period, this could be avoided. On the other 
hand, if the slope of g(t) is small, a reduction of step size will reduce the 
threshold level as well as the granular noise. The slope overload causes dq[k] to 
have several pulses of same polarity in succession. This call for increased step 
size. Similarly, pulses in dq[k] alternating continuously in polarity indicates 
small amplitude variations, requiring a reduction in step size. This results in a 
much larger dynamic range for DM. 



 Output SNR
The error d(t) caused by the granular noise in DM, (excluding slope overload), 
lies in the range (-Δ,Δ) , where Δ is the step height in gq(t). The situation is 
similar to that encountered in PCM, where the quantization error amplitude 
was in the range from –Δ/2 to Δ/2. The quantization noise is, 

 

∆ 
 <q2e> = 1/Δf2 q2dq 

 
= Δ2/12 (2.34) 

∆    e e 
2 

Similarly the granular noise power <g2n> is 

<g2n> = 1/(2A) fA  g2 . dg = A3/3 (2.35) 
–A   n n 

The granular noise PSD has continuous spectrum, with most of the power in 
the frequency range extending well beyond the sampling frequency ‘fs’. At the 
output, most of this will be suppressed by the baseband filter of bandwidth W. 
Hence the granular noise power N0 will be well below that indicated in 
equation (18). To compute N0 we shall assume that PSD of the quantization 
noise is uniform and concentrated in the band of 0 to fs Hz. This assumption 
has been verified experimentally. Because the total power Δ3/3 is uniformly 
spread over the bandwidth fs, the power within the baseband W is 

 

N0 = (Δ3/3)W/fs = Δ2.W/(3fs) (2.36) 
 

The output signal power is S0 = <g2(t)>. Assuming no slope overload distortion 

S0/N0 = 3.fs<g2(t)>/(Δ2.W) (2.37) 

If gp is the peak signal amplitude, then eqn. (2.33) an be written as, 
 

gp = Δfs/Wr 
& S0/N0 = 3.f3s<g2(t)>/(W2r.W.g2p) (2.38) 

 

Because we need to transmit fs pulses per second, the minimum transmission 
bandwidth BT = fs/2. Also for voice signals, W=4000 and Wr =2.pi.800 =1600.pi. 
Hence, 

S0/N0 = [3.(2BT)3<g2(t)>]/[1600x1600.π2Wg2p] 
=150/ π2.(BT/W)3.<g2(t)>/g2p (2.39) 

 
Thus the output SNR varies as the cube of the bandwidth expansion ratio 
BT/W. This result is derived for the single integration case. For double 
integration DM, Greefkes and De Jager have shown that, 

 

S0/N0 = 5.34(BT/W)5<g2(t)>/g2p (2.40) 

– 



It should be remembered that these results are valid only for voice signals. In 
all the preceding developments, we have ignored the pulse detection error at 
the receiver. 

 

 Comparison With PCM

The SNR in DM varies as a power of BT/W, being proportional to (BT/W)3 for 
single integration and (BT/W)5 for double integration. In PCM on the other 
hand the SNR varies exponentially with BT/W. Whatever the initial value, the 
exponential will always outrun the power variation. Clearly for higher values 
of BT/W, PCM is expected to be superior to DM. The output SNR for voice 

signals as a function of the bandwidth expansion ratio BT/W is plotted in fig. 
for tone modulation, for which <g2> /gp

2 = 0.5. The transmission band is 
assumed to be the theoretical minimum bandwidth for DM as well as PCM. It 
is clear that DM with double integration has a performance superior to 
companded PCM(which is the practical case) for lower valued of BT/W = 10. In 
practice, the crossover value is lower than 10, usually between 6 & 7(fs = 50 
kbits/s). This is true only for voice and TV signals, for which DM is ideally 
suited. For other types of signals, DM does not comparable as well with PCM. 
Because the DM signal is digital signal, it has all the advantages of digital 
system, such as the use of regenerative repeaters and other advantages as 
mentioned earlier. As far as detection of errors are concerned, DM is more 
immune to this kind of error than PCM, where weight of the detection error 
depends on the digit location; thus for n=8, the error in the first digit is 128 
times as large as the error in the last digit. 

 

Fig. 2.21a Comparison of DM and PCM. 

 

For DM, on the other hand, each digit has equal importance. Experiments have 
shown that an error probability ‘Pe’ on the order of 10-1 does not affect the 



intelligibility of voice signals in DM, where as ‘Pe’ as low as 10-4 can cause 
serious error, leading to threshold in PCM. For multiplexing several channels, 
however, DM suffers from the fact that each channel requires its own coder  
and decoder, whereas for PCM, one coder and one decoder are shared by each 
channel. But his very fact of an individual coder and decoder for each channel 
also permits more flexibility in DM. On the route between terminals, it is easy 
to drop one or more channels and insert other incoming channels. For PCM, 
such operations can be performed at the terminals. This is particularly 
attractive for rural areas with low population density and where population 
grows progressively. The individual coder-decoder also avoids cross-talk, thus 
alleviating the stringent design requirements in the multiplexing circuits in 
PCM. 
In conclusion, DM can outperform PCM at low SNR, but is inferior to PCM in 
the high SNR case. One of the advantages of DM is its simplicity, which also 
makes it less expensive. However, the cost of digital components, including 
A/D converters, ie, coming down to the point that the cost advantage of DM 
becomes insignificant. 

 
 Noise in PCM and DM

 

 

Fig. 2.13 A binary PCM encoder-decoder. 
 

In the above figure m(t) is same as g(t). The baseband signal g(t) is quantized, giving 

rise to quantized signal gq(t), where 

gq(t) = g(t) + e(t) (2.41) 

(e(t) is same as qe(t) as discussed earlier). 

The sampling interval is Ts=1/2fm , where fm is the frequency to which the signal g(t) is 

bandlimited. 



–œ 
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The sampling pulses considered here are narrow enough so that the sampling may be 

considered as instantaneous. With such instantaneous sampling, the sampled signal may 

be reconstructed exactly by passing the sequence of samples through a low pass filter 

with cut off frequency of fm. Now as a matter of mathematical convenience, we shall 

represent each sampling pulse as an impulse. The area of such an impulse is called its 

strength, and an impulse of strength I is written as Iδ(t). 

The sampling impulse train is therefore s(t), given by, 
 

s(t) = I∑œ
 ð(t — k) Tc (2.42) 

Where, Ts = 1/(2.fm) 
From equation 1 and 2 , the quantized signal gq(t) after sampling becomes gqs(t), 

written as, 
 

gqs(t) = g(t)I∑œ
 ð(t — kTc) + e(t)I∑œ

 ð(t — kTc) (2.43a) 

= gs(t) + es(t) (2.43b) 

 

The binary output of the A/D converter is transmitted over a communication channel 

and arrives at the receiver contaminated as a result of the addition of white thermal 

noise W(t). Transmission may be direct as indicated in fig.2.13, or the binary output 

signal may be used to modulate a carrier as in PSK or FSK. 

In any event the received signal is detected by a matched filter to minimize errors in 

determining each binary bit and thereafter passed on to a D/A converter. The output of 

a D/A converter is called gqs(t). In the absence of thermal noise and assuming unity  

gain from the input to the A/D converter to the output of the D/A converter, we should 

have g~qs(t) = gqs(t) . Finally the signal g~qs(t) is passed through the low pass baseband 

filter. At the output of the filter we find a signal g0(t) which aside from a possible 

difference in amplitude has exactly the waveform of the original baseband signal g(t). 

This output signal however in accompanied by a noise waveform Wq(t) due to thermal 

noise. 

 

 Calculation of Quantization Noise
 

Let us calculate the output power due to the quantization noise in the PCM system as in 

fig.2.14 ignoring the effect of thermal noise. 

The sampled quantization error waveform, as given by eqn (2.43b), 
 

es(t) = e(t)I∑œ
 g(t — kTc) (2.44) 

 

It is to be noted that if the sampling rate is selected to be the nyquist rate for the 

baseband signal g(t) the sampling rate will be inadequate to allow reconstruction of the 

error signal e(t) from its sample es(t). In fi.2 the quantization levels are separated by 

amount ∆. We observe that e(t) executes a complete cycle and exhibits an abrupt 

discontinuity every time g(t) makes an excursion of amount ∆. Hence spectral range of 

e(t) extends for beyond the band limit fm of g(t). 



k=–œ 

 
 

Fig. 2.14 Plot of mq(t) and e(t) as a function of m(t). 

 

To find the quantization noise output power Nq, we require the PSD of the sampled 

quantization error es(t) given in eqn (2.44). 

 

Since δ(t-kTs) = 0 except when t=kTs es(t) may be written as, 
 

es(t) = I.∑œ
 e(kTc)ð(t — kTc) (2.45) 

 

The waveform of eqn (2.45) consists of a sequence of impulses of area=A=e(kTs) I 

occurring at intervals Ts. The quantity e(kTs) is the quantization error at sampling time 

and is a random variable. 

The PSD Ges(f) of the sampled quantization error is, 

 

  (2.46) 

and, 

 

For a step size of ∆ the quantization error is 

 

e2(t) = Δ2/12 (2.47) 

 

Equation 6 involves <e2(kTs)> rather than <e2(t)>. However since the probability 

density of e(t) does not depend on time the variance of e(t) is equal to the variance of 

e(t= kTs) . 

 

Thus, <e2(t)> = <e2(kTs)> = Δ2/12 (2.48) 

From eqn. (2.46) and eqn. (2.49) we have, 

 

Ges(f) = I2Δ2/(Ts.12) (2.49) 

Finally the quantization noise Nq is, from eqn. (2.50), 

 

 
(2.50) 

 

 

 
[take ‘S’ as ‘Δ’ ] 
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 The Output Signal Power

The sampled signal which appears at the input to the baseband filter shown in fig.2.14 

is given by gs(t) in eqn(2.43) as. 
 

gs(t) =g(t).I.∑œ
 ð(t — kTc) (2.51) 

 

Since the impulse train is periodic it can be represented by a fourier series. Because the 

impulses have strength I and are separated by a time Ts, the first term in Fourier series 

is the dc component which is 1/Ts. Hence the signal g0(t) at the output of the baseband 

filter is 

 

g0(t) = I/Ts.g(t) (2.52) 

 

Since Ts=1/2fm , other terms in the series of equation 11 lie outside the passband of the 

filter. The normalised signal output power is from eqn (2.52), 

ḡ̄2̄(̄t̄) = I2/T2 .ḡ̄2̄(̄t̄) (2.53) 
 

We can now express ḡ̄2̄ (̄t̄) in terms of the number M of quantization levels and the step 

size ∆. To do this we can say that the signal can vary from -m∆/2 to m∆/2, i.e we 

assume that the instantaneous value of g(t) may fall anywhere in its allowable range of 

‘m∆’ volts with equal likelihood. Then the probability density of the instantaneous 

value of g in f(g) given by, 

 

f(g) = 1/(MΔ) 

The variance 2 of g(t), ie, ḡ̄2̄(̄t̄) is, 
 

M∆ 

ḡ̄2̄(̄t̄) = f 2 

2 

g2 f(g)dg = M2.Δ2/12 (2.54) 

 

Hence from eqn. (2.53), the output signal power is 
 

S0 = ḡ̄2̄(̄t̄) = I2/T2 . M2.Δ2/12 (2.55) 

From eqn.(2.50) and (2.55) we find the signal to quantization noise ratio is 

 

So /Nq = M2 = (2N)2 (2.56) 

where, N is the number of binary digits needed to assign individual binary code 

designations to the M quantization levels. 

 

 The Effects of Thermal Noise

The effect of additive thermal noise is to calculate the matched filter detector of 

fig.2.14 to make an occasional error in determining whether a binary 1 or binary 0 was 

transmitted. If the thermal noise is white and Gaussian the probability of such an error 

depends on the ratio Eb/η. Where Eb is signal energy transmitted during a bit and η/2 is 

the two sided power spectral density of the noise. The probability depends also on the 

type of modulation employed. 



Rather typically, PCM system operate with error probabilities which are small enough 

so that we may ignore the likelihood that more than a single bit error will occur with in 

a single word. For example, if the error probability Pe=10-5 and a word of 8 bits we 

would expect on the average that 1 word would be in error for every 12500 word 

transmitted. Indeed the probability of two words being transmitted in error in the same 

8 bit word is 28*10-10. 

 

Let us assume that a code word used to identify a quantization level has N bits. We 

assume further that the assignment of code words to levels is in the order of numerical 

significance of the word. Thus we assign 00. 00 to the most negative level to the next 

higher level until the most positive level is assigned the codeword 1 1. 1 1. 
 

An error which occurs in the least significant bit of the code word corresponds to an 

incorrect determination by amount ‘∆’ in the quantized value gs(t) of the sampled 

signal. An error in the next higher significant bit corresponds to an error 2∆; in the next 

higher, 4∆, etc. 

Let us call the error δgs. Then assuming that an error may occur with equal likelihood 

inany bit of the word, the variance of the error is, 

 

<δg2
s> = 1/N.[ Δ2 + (2Δ)2 + (4Δ)2 + ........... +(2N-1Δ)2] 

= Δ2/N.[ 12 + (2)2 + (4)2 + ...........+(2N-1)2] (2.57) 

The sum of the geometric progression in eqn.(2.57), 

 

<δg2
s> = Δ2/N.2(2N-1)/(22-1) = 22N.Δ2/(3N), for N ≥ 2 (2.58a) 

The preceding discussion indicates that the effect of thermal noise errors may be taken 

into account by adding at the input to the A/D converter in fig. 2.14, an error voltage 

δgs , and by detecting the white noise source and the matched filter. We have assumed 

unity gain from the input to the A/D converter to the output of the D.A converter. Thus 

the same error voltage appears at the input to the lowpass baseband filter. The results of 

a succession of errors is a train of impulses, each of strength I(δgs). These impulses are 

of random amplitude and of random time of occurrence. 

A thermal noise error impulse occurs on each occasion when a word is in error. 

With Pe the probability of a bit error, the mean separation between bits which are in 

errors is 1/ Pe. 

With N bits per word , the mean separation between words which are in error is 1/N Pe 

words. Words are separated in time by the sampling interval Ts. Hence the mean time 

between words which are in error is T, given by 

 

  (2.58b) 

The power spectral density of the thermal noise error impulses train is, using 

eqn.(2.58a) and(2.58b), 

 

Gth(f) = I2/T < δ.gs
2 > = NPeI

2/Ts <δ.gs
2> (2.59) 

using eqn.(2.58a), we have 



–f 

Gth(f) = 22NΔ2PeI
2/(3T2

e) (2.60) 

Finally, the output power due to the thermal error noise is, 
 

Nth  = f
fN

 

N 
Gth(f)df = 22N.Δ2PeI

2/(3.Ts
2) (2.61) 

 

 Output Signal To Noise Ratio in PCM

The output SNR including both quantization and thermal noise , is found by combining 

equation 10,16 and 23. The result is 
 

[replace ‘S’ by ‘Δ’; S is same as Δ] 
 

 

 

 

In PSK(or for direct transmission) we have, 

 

 

 

(2.62) 

 

 

 
(2.63) 

 

Where, Eb is the signal energy of a bit and η/2 is the two sided thermal noise power 

spectral density. Also, for coherent reception of FSK we have, 

 

 

(2.64) 

 

To calculate Eb, we note that if a sample is taken at intervals of Ts and the code word of 

N bit occupies the total interval between samples, then a bit has a duration Ts/N. If the 

received signal power is Si , energy associated with a single bit is 

 

  (2.65) 

Combining eqns. (2.62), (2.63) & (2.65), we find, 

 

  (2.66) 

using eqn.(2.64) in place of eqn.(2.63), we have 

 
 

  (2.67) 



 

  

 

 
 

(2.68) 
 

 

From fig. we find both the PCM system exhibit threshold, FSK threshold occurring at a 

Si/ηfm which is 2.2 dB greater than that for PSK. Experimentally, the onset of threshold 

in PCM is marked by an abrupt increase in a crackling noise analogous to the clicking 

noise heard below threshold in analogue FM systems. 

 

 

 Delta Modulation:
 

A delta modulation system including a thermal noise source is shown in fig.2.15. The 

impulse generator applies the modulator a continuous sequence of impulses pi(t) of  

time separation τ. The modulator output is a sequence of pulses P0(t) whose polarity 

depends on the polarity of the difference signal δ(t)=g(t) – g~(t) , where g~(t) is the 

integrator output. We assume that the integrator has been adjusted so that its response 

to an input impulse of strength I is a step size ∆; i.e. g~(t) = (∆/I)∫P0(t)dt. 
 
 

 

 
 

Fig. 2.15  A delta modulation system. 

 

A typical impulse train P0(t) is shown in fig.2.16(a). Before transmission, the impulse 

waveform will be converted to the two level waveform of fig.2.16(b). Since this latter 

waveform has much greater power than a train of narrow pulses. This conversion is 



accomplished by the block in fig.2.15 marked “transmitter”. The transmitter in 

principle need be nothing more complicated than a bistable multivibrator. We may 

readily 

 

 
Fig.2.16 (a) A typical impulse train p0(t)appearing at the modulator output in previous fig. 

(b) The two-level signal transmitted over the communication channel. 

 

arrange that two positive impulses set the flip-flop into one of its stable states, while the 

negative impulses reset the flip-flop to its other stable state. The binary waveform of 

fig.2.16(b) will be transmitted directly or used to modulate as a carrier in FSK or PSK. 

After detection by the matched filter shown in fig.2.15, the binary waveform will be 

reconverted to a sequence of impulses P0′(t). In the absence of thermal noise 

P0′(t)=P0(t), and the signal g~(t) is recovered at the receiver by passing P0’(t) through an 

integrator. We assume that transmitter and receiver integrators are identical and that the 

input to each consists of a train of impulses of strength +I or -I. Hence in the absence of 

thermal noise , the output of both the integrators are identical. 

 

 Quantization Noise in Delta Modulation
 

Here in fig. 2.17 g~(t) in the delta modulator approximation to g(t). Fig 2.17 shows the 

error waveform δ(t) given by, 

 

δ(t) = g(t) – ĝ(t) (2.69) 

This error waveform is the source for quantization noise. 



–A 

 
 

Fig. 2.17 The estimate ĝ(t) and error Δ(t) when g(t) is sinusoidal. 

 

 

 
We observe that, as long as slope overloading is avoided, the error δ(t) is always less than the 

step size ∆. We shall assume that δ(t) takes on all values between -∆ and +∆ with equal 

likelihood. So we can assume the probability δ(t) is, 

 

f(δ) = 1/(2Δ), -Δ ≤ δ(t) ≤ Δ (2.70) 

 

The normalization power of the waveform δ(t) is then, 
 

<[δ(t)]2> = f
A

 f(ð) ð2dð = Δ2/3 (2.71) 
 

Our interest is in estimating how much of this power will pass through a baseband 

filter. For this purpose we need to know something about the PSD of δ(t) . 

 

In fig. 2.17 the period of the sinusoidal waveform g(t) i.e. T has been selected so that T 

is an integral multiple of step duration τ. We then observe that the δ(t) is periodic with 

fundamental period T, and is of course, rich in harmonics. Suppose, however, that the 

period T is charged very slightly by amount δT. Then the fundamental period of δ(t) 

will not be T but will be instead T * τ/δT corresponding to a fundamental frequency 

near zero as δT tends to 0. And again, of course δ(t) will be rich in harmonics. Hence, 

in the general case, especially with g(t) a random signal, it is reasonable to assume that 

δ(t) has a spectrum which extends continuously over a frequency which begins near 

zero. 

 

To get some idea of the upper frequency range of the spectrum of the waveform δ(t). 

Let us contemplate passing δ(t) through a LPF of adjustable cutoff frequency. Suppose 



that initially the cutoff frequency is high enough so that δ(t) may pass with nominally 

no distortion. As we lower the cutoff frequency, the first type of distortion we would 

note is that the abrupt discontinuities in the waveform would exhibit finite rise and fall 

times. Such is the case since it is the abrupt changes which contribute the high 

frequency power content of the signal. To keep the distortion within reasonable limits, 

let us arrange that the rise time be rather smaller than the interval τ. To satisfy this 

condition we require the filter cutoff frequency fc be of the order of fc=1/τ, since the 

transmitted bit rate fb=1/τ, fc=fb as expected. 

 

We now have made it appear reasonable, by a rather heuristic arguments that the 

spectrum of δ(t) extends rather continuously from nominally zero to fc = fb. We shall 

assume further that over this range the spectrum is white. It has indeed been established 

experimentally that the spectrum of δ(t) is approximately white over the frequency 

range indicated. 

 

We may now finally calculate the quantization noise that will appear at the output of a 

baseband filter of cutoff frequency fm. Since the quantization noise power in a 

frequency range fb is ∆3/3 as given by equation 32, the output noise power in the 

baseband frequency range fm is 

[replace ‘S’ with ‘Δ’ ] (2.72) 

We may note also, in passing, that the two-sided power spectral density of δ(t) is, 

 

Gδ(f) = Δ2/(3.2.fb) = Δ2/(6.fb), -fb ≤ f ≤ fb (2.73) 

 

 The Output Signal Power
 

In PCM, the signal power is determined by the step size and the number of quantization 

levels. Thus, with step size ∆ and M levels, the signal could make excursion only 

between -M∆/2 and M∆/2. In delta modulation there is no similar restriction on the 

amplitude of the signal waveform, because the number of levels is not fixed. On the 

other hand, in delta modulation there is a limitation on the slope of the signal wave 

form which must be observed if slope overload is to be avoided. If however, the signal 

waveform changes slowly , there is normally no limit to the signal power which may be 

transmitted. 

 

Let us consider a worst case for delta modulation. We assume that the signal power is 

concentrated at the upper end of the baseband. Specifically let the signal be, 

 

g(t) = A.sin(wmt) 

 

With ‘A’ the amplitude and ωm =2πfm, where fm is the upper limit of the baseband 

frequency range. Then the output signal power 

S0(t) = ḡ̄2̄(̄t̄) = A2/2 (2.74a) 



The maximum slope of g(t) is ωmA. The maximum average slope of the delta  

modulator approximation g~(t) is ∆/τ = ∆fb, where ∆ is step size and fb the bit rate. The 

limiting value of ‘A’ just before the onset of slope overload is, therefore given by the 

condition, 

 

wM . A = Δfb (2.74b) 

 

From eqns.(2.74a) and (2.74b), we have that the maximum power which may be 

transmitted in, 

 

S0 = Δ2f2
b/(2w2

M) (2.75) 

The condition specified in equation 37 is unduly severe. A design procedure, more 

often employed, is to select the ∆fb product to be equal to the rms value of the slope 

g(t). In this case the output signal power can be increased above the value given in 

equation 38. 

 

 

 

 Output Signal to Quantization Noise Ratio for Delta Modulation
 

The output signal to quantization noise ratio for delta modulation is found by dividing 

eqn.(2.75) by eqn.(2.72). The result is 

 

  (2.76) 

It is of interest to note that when our heuristic analysis is replaced by a rigorous 

analysis, it is found that eqn. 39 continues to apply, except with a factor 3/80 replaced 

by 3/64, corresponding to a difference of less than 1dB. 

 

The dependence of S0/Nq on the product fb/fm should be anticipated. For suppose that 

the signal amplitude were adjusted to the point of slope overload, if now, say, fm were 

increased by some order to continue to avoid overload. 

 

Let us now make a comparison of the performance of PCM and DM in the matter of the 

ratio S0/Nq. We observe that the transmitted signals in DM and in PCM are of the same 

waveform, a binary pulse train. In PCM a voltage level, corresponding to a single bit 

persists for the time duration allocated to one bit of codeword. With sampling at the 

Nyquist rate 1/2fm s , and with N bits per code word , the PCM bit rate is fb=2fmN. In 

DM, a voltage corresponding to a single bit is held for a duration τ which is the interval 

between samples. Thus the DM system operates at a bit rate fb=1/τ. 

 

If the communication channel is of limited bandwidth, then there is a possibility of 

interference in either DM or PCM. Whether such inter-symbol interference occurs in 

DM depends on the ratio of fb to the bandwidth of the channel and similarly in PCM on 

the ratio of fb to the channel bandwidth. For a fixed channel bandwidth, if inter-symbol 



interference is to be equal in the two cases, DM or PCM , we require that both systems 

operate at the same bit rate or 

 

fb=f’b=2fmN (2.77) 

 

Combining eq 17 and 40 for PCM yields 

 

S0/Nq=22N=2fb/fm (2.78) 

Combining eq 39 and 40 for delta modulation yields 

 

S0/Nq = N3 (3/π2) (2.79) 

Comparing equation 41 with 42 , we observe that for a fixed channel bandwidth the 

performance of DM is always poorer than PCM. For example if a channel is adequate 

to accommodate code words in PCM with N=8, equation 41 gives S0/Nq = 48dB. The 

same channel used for DM would, from equation 42 yield S0/Nq =22dB. 

 

 Comparison of DM and PCM for Voice
 

when signal to be transmitted is the waveform generated by voice, the comparison 

between DM and PCM is overly pessimistic against DM. For as appears in the 

discussion leading to equation 37, in our concern to avoid slope overload under any 

possible circumstances, we have allowed for the very worst possible case. We have 

provided for the possibility that all the signal power might be concentrated at the 

angular frequency ωm which is the upper edge of the signal bandwidth. Such is  

certainly not the case for voice. Actually for speech a bandwidth fm = 3200Hz is 

adequate and the voice spectrum has a pronounced peak at 800Hz = fm/4. If we replace 

ωm by ωm/4 in eqn. (2.74b) we have, 

 

wM .A/4 = Δ.fb 

 

The amplitude ‘A’ will now be four times larger than before and the allowed signal 

power before slope overload will be increased by a factor of it(12dB). Correspondingly, 

equation 39 now becomes, 

 

S0/Nq = 6/π2.(fb/fM)3 = 0.6(fb/fM)3 = 5N3 (2.80) 

It may be readily verified that for (fb/fm)≤8 the signal to noise ratio for DM , SNR(δ), 

given by eqn.(2.80) is larger than SNR(PCM) given by eqn (2.78). At about (fb/fm) = 4 

the ratio SNR(DM)/ SNR(PCM) has maximum value 2.4 corresponding to 3.8db 

advantage. Thus if we allow fm = 4KHz for voice, then to avail ourselves of this 

maximum advantage offered by DM we would take fb = 16KHz. 

 

In our derivation of the SNR in PCM we assumed that at all times the signal is strong 

enough to range widely through its allowable excursion. As a matter of fact, we 

specifically assumed that the distribution function f(g) for the instantaneous signal 

value g(t) was uniform throughout the allowable signal range. As a matter of practice, 

such would hardly be the case. The commercial PCM systems using companding, are 

designed so that the SNR remains at about 30dB over a 40dB range of signal power. In 



c 

short while eqn (2.78) predicts a continuous increase in SNR(PCM) with increase in 

fb/fm, this result is for uncompanded PCM and in practice SNR(PCM) is approximately 

constant at 30dB. The linear DM discussed above has a dynamic range of 15dB. In 

order to widen this dynamic range to 40dB one employs adaptive DM(ADM), which 

yields advantages similar to the companding of PCM. When adaptive DM is employed, 

the SNR is comparable to the SNR of companded PCM. Today the satellite business 

system employs ADM operating at 32kb/s rather than companded PCM which operates 

at 64kb/s thereby providing twice as many voice channels in a given frequency band. 

 

 The Effect of Thermal Noise in DM

 

When thermal noise is present, the matched filter in the receiver will occasionally make 

an error in determining the polarity of the transmitted waveform. Whenever such an 

error occurs , the received impulse stream P0′(t) will exhibit an impulse of incorrect 

polarity. The received impulse stream is then 

 

P0′(t)=P0(t) + Pth(t) (2.81) 

 

In which Pth(t) is the error impulse stream due to thermal noise. If the strength of the 

individual impulses is I, then each impulse in Pth is of strength 2I and occurs only at 

each error. The factor of two results from the fact that an error reverses the polarity of 

the impulse. 

 

The thermal error noise appears as a stream of impulses of of random time of 

occurrence and of strength ±2I. The average time of separation between these impulses 

is τ/Pe, where Pe is the bit error probability and τ is the time duration of a bit. The PSD 

of thermal noise impulses is 

 

Gpth(f) = Pe (2I)2 (2.82) 

 
Now the integrators (assumed identical in both the DM transmitter and receiver) as 

having the property that when the input is an impulse of strength the output is a step of 

amplitude ∆ is 

 

F{∆u(t)} = ∆/jω ; ω≠0 

= ∆πδ(ω) ; ω=0 (2.83) 

 

We may ignore the dc component in the transform since such dc components will not 

be transmitted through the baseband filter. Hence we may take the transfer function of 

the integrator to be Hi(f) given by 
 

Hi(f) = ∆ 1 ; ω ≠ 0 - (2.84) 
I jm 

And │ Hi(f) │
2 = ( ∆ )2 1

 
 

 
; ω=0 (2.85) 

I m2 
 

From equation 46 and 49 we find that the PSD of the thermal noise at the input to the 

baseband filter is Gth(f) given by 
 

G (f) = │ H (f) │2 G (f) = 
4∆2Pe 

 
 

(2.86) 
th i pth cm2 



e   b m 1 

e 



f f f 

It would now appear that to find the thermal noise output, we need not to integrate 

Gth(f) over the passband of the baseband filter. During integration we have extended the 

range of integration from –fm through f=0 to +fm, even though we recognised that 

baseband filter does not pass dc and eventually has a low frequency cutoff f1. However 

in other cases the PSD of the noise near f=0 is not inordinately large in comparison 

with the density throughout the baseband range generally. Hence, it as is normally the 

case, f1<<fm, the procedure is certainly justified as a good approximation. We observe 

however that in the 

present case [eqn (2.86)], Gth (f)    at   0 , and more importantly that the integral 

of Gth(f), over a range which include    0 ,is infinite. Let us then explicitly take 

account of the low frequency cutoff f1 of the baseband filter. The thermal noise output 

1 

is using eqn (2.86) with   2 f  and since fb   
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df
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(2.87) 
22Pe  1 

 
 


 1 

 2  
f1
 

fm 


=   (2.88) 

2
2 

Pe  
2

2 
Pe fb 

  

=  2 f1  2 
f1 (2.89) 

If f1 << fm, unlike the situation encountered in all other earlier cases, the thermal noise 
output in delta modulation depends upon the low frequency cutoff rather than the 

higher frequency limit of the baseband range. In many application such as voice 

encoder where the voice signal is typically band limited from 300 to 3200 Hz, the use of 

band pass output filter(f1=300Hz) is common place. 

 

 Output Signal-to-Noise ratio in DM

 
The o/p SNR is obtained by combining eqn (2.72), (2.80) and (2.89), the result is 

S0 


N0 

S0 

Nq  Nth 
 

(2
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/  )(fb / fm )
2

 

(
2 

fm / 3 fb )  (2
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Pefb /  2 
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(2.90) 

Which may be written as 

S0 


N0 

0.6(fb / fm )
3

 
 

1  0.6P (f 
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/ f f ) 

 
 

(2.91) 

If transmission is direct or by means of PSK, 

P   
1 

erfc 
2 

Where Es is the signal energy is a bit, is related to the received signal power Si 

 

 
(2.92) 

By Es= SiTb = Si/fb (2.93) 

Combining eqn (2.91), (2.92) and (2.93), we have 

Es /

 



b m 1 
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S0   
0.6(fb / fm )
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N0 1 [0.3 f 
2 

/ f f ]erfc Si /  fb (2.94) 
 

 Comparison of PCM and DM

 

We can now compare the output signal SNR I PCM and DM by comparing 

eqn(2.66)and (2.94). To ensure that the communications channels bandwidth required is 

same in the two cases, we use the condition, given in eqn(2.77), that 2N = fb/fm . Then 

eqn(2.66) can be written as 
fb 
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N0 

2 fm 

 
 

f
b    

 

1 2(2 
f

m ) erfc 

 

 
 

(2.95) 

Eqn (2.95) and (2.94) are compared in fig.2.18 for N=8(fb(DM)=48 Kb/s) : to obtain the 

thermal performance of the delta modulator system, we assume voice transmission 

where fm=300 Hz and f1 = 300 Hz . 

 

Thus fb/fm =16 (2.96) 

And fm/f1 = 10 (2.97) 

 
Let us compare the ratios S0/N0 for PCM and DM for case of voice transmission. We 
assume that fm=3000 Hz, f1 = 2Nfm= 48 x 103 Hz. Using these numbers and resulting 

that the probability of an error in a bit as Peb = 
1 

erfcƒSi/5fb   we have from eqn (2.94) 

& (2.95) the result for DM is, 
 

( 
S0 )DM 
N0 
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(2.98) 
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Fig.2.18 A comparison of PCM & DM 
 

And for PCM 
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S0 )PCM 
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(2.99) 
 

When the probability of bit error is very small, the PCM system is seen to have higher 

output SNR than the DM system. Indeed the o/p SNR for PCM system is 48 dB and 

only about 33 dB for DM system. However, an o/p SNR of 30 dB is all that is required 

in a communication system. Indeed if commanded PCM is employed the o/p SNR will 

decrease by about 12 dB to 36 dB for PCM system. Thus eqn (2.99) indicates that the 

output SNR is higher for PCM system, the output SNR. In practice, can we consider as 

being comparable. 

With regard to the threshold, we see that when Pe ~ 10-6 the PCM system has 

reached threshold with the DM system reaches threshold when Pe ~ 10-4. In practice, we 

find that our ear does not detect threshold Pe is about 10-4 for PCM and 10-2 for DM and 

ADM. Some ADM systems can actually produce understandable speech at error rates 

as high as 10-1-. Fig.2.18 shows a comparison of PCM and DM for N=8 and fm/f1 = 10. 
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Principles of Digital Data Transmission: 
A Digital Communication System 

 

 

 

 

1. Digital Data Set 

2. Computer output 

Figure 3.0 A Simple Digital Communication System 

3. Digital Voice Signal (PCM or DM) 

4. Digital facsimile signal 

5. Digital TV signal 

6. Telemetry equipment signal 

7. Etc. 

Line Coding 

Digital data can be transmitted by various line codes 

Desirable properties from a line code 

1. Transmission bandwidth – It should be as small as possible 
2. Transmitted power – It should be as small as possible 

3. Error detection and correction capability – It must be good 
4. Favorable PSD – It is desirable to have zero power spectral density (PSD) at ω = 0, because 

AC coupling and transformers are used at the repeaters. Significant powers in low frequency 

components cause DC wander in the pulse stream when AC coupling is used. 

5. Adequate timing content – It should be possible to extract timing and clock information from 

the signal 

6. Transparency – It should be possible to transmit a digital signal correctly regardless of the 

pattern of 1’s and 0’s. If the data are so coded that for every possible sequence of data the 

coded signal is received faithfully, the code is then transparent. 
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Figure 3.1 Binary signaling formats 
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Repeater 

Line coder Multiplexer Source 



Various line codes 

Various line codes are as shown in Figure 3.1 

 

Power Spectral Density (PSD) of Line Codes 

1. The output distortion of a communication channel depends on the power spectral density of the 

input signal 

2. Input PSD depends on 

i) pulse rate (spectrum widens with pulse rate) 

ii) pulse shape (smoother pulses have narrower PSD) 

iii) pulse distribution 
3. Distortion can result in smeared channel output; output pulses are (much) longer than input 

pulses 

4. Inter symbol interference (ISI): received pulse is affected by previous input symbols 

Figure 3.2 

Power Spectral Density (review) 

For an energy signal g(t) the energy spectral density is the Fourier transform of the autocorrelation: 
 

 

The autocorrelation of a periodic signal is periodic. 

 

For a power signal, autocorrelation and PSD are average over time. Defines 

 

(3.1) 

 

 
(3.2) 

 

 
 

(3.3) 
 

Then, (3.4) 

 

PSD of Line Codes 

The PSD of a line code depends on the shapes of the pulses that correspond to digital values. Assume 

PAM. 

 

 

 

 

 

 

 

 

 

 

 
 

(3.5) 



The transmitted signal is the sum of weighted, shifted pulses. Where, Tb is spacing between pulses. 

(Pulse may be wider than Tb.) PSD depends on pulse shape, rate, and digital values {ak}. We can 

simplify analysis by representing {ak} as impulse train as shown in figure 3.3(c). 
 

Figure 3.3 

 

PSD of y(t) is Sy(f) = |P(f)|2Sx(f). 

 P(f) depends only on the pulse, independent of digital values or rate.

 Sx(f) increases linearly with rate 1/Tb and depends on distribution of values of { ak }. E.g., ak = 1 for 

all k has narrower PSD.
 

PSD of Impulse Train 

 

The autocorrelation of (3.6) 

 
 

can be found as the limit of the autocorrelation of pulse trains: 

 

  (3.7) 

The autocorrelation of this pulse train (a power signal) is 

 

  (3.8) 

Therefore, (3.9) 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.4 

 

PSD of Polar Signaling 

and in general 

 

(3.10) 

 

The autocorrelation is discrete. 

Therefore PSD is periodic in frequency. 

 

The PSD of pulse signal is product 
 

(3.11) 

 
 
 

 

 
 1 → +p(t) , 0 → −p(t) 

 Since ak and ak+n (n ≠ 0) are independent and equally likely, 
 

 
 

 

Figure 3.5  

 

 

 

 

 

 

 
 

(3.12) 

 

(3.13) 
 

 Example: NRZ (100% pulse) p(t) = (t/Tb) 



 

 
 Half-width: p(t) = (t/(Tb/2)) 

 

(3.14) 

 

 
(3.15) 

 

Power spectral density of Polar Signaling (Half-Width Pulse) 

 

For NRZ,                  (3.16) 

 

Figure 3.6 PSD of Polar Signaling (Half-Width Pulse) 

 

The bandwidth 2Rb is 4× theoretical minimum of 2 bits/Hz/sec. 

 

PSD of On-Off Signaling 
 

 On-off signaling is shifted polar signaling: 
 

 

 The DC term results in impulses in the PSD: 
 

 We can eliminate impulses by using a pulse p(t) with 

(3.17) 

 

 

 

(3.18) 

 
 

(3.19) 

 Overall, on-off is inferior to polar. For a given average power, noise immunity is less than for 

bipolar signaling. 



Alternate Mark Inversion (Bipolar) Signaling 

AMI encodes 0 as 0 V and 1 as +V or −V, with alternating signs. 
 

Figure 3.7 AMI signaling 
 

AMI was used in early PCM systems. 

 Eliminates DC build up on cable.

 Reduces bandwidth compared to polar.

 Provides error detecting; every bit error results in bipolar violation.

 Guarantees transitions for timing recovery with long runs of ones. 

AMI is also called bipolar and pseudo-ternary.
 

PSD of AMI Signaling 

If the data sequence { ak } is equally likely and independent 0s and 1s, then the autocorrelation 

function of the sequence is 

  (3.20) 
 

Therefore, (3.21) 
 
 

This PSD falls off faster than sinc (Tbf). Further, the PSD has a null at DC, which aids in 

transformer coupling. 



 
 

Figure 3.8 PSD of bipolar, polar, and split phase signals normalized for equal power. (Half width 

rectangular pulses are used) 

 
Nyquist First Criterion 

 

Reducing ISI: Pulse Shaping 

 A time-limited pulse cannot be band-limited 

 Linear channel distortion results in spread out, overlapping pulses 

 Nyquist introduced three criteria for dealing with ISI. 

 

The first criterion was that each pulse is zero at the sampling time of other pulses. 
 

 

 

 

 

 
 

Figure 3.9 

Pulse Shaping: Sinc Pulse 

 Let Rb = 1/Tb. The sinc pulse, sinc(Rbt) satisfies Nyquist’s first crierion for zero ISI:

 

 

 

 

 

 

 

 

 

 
(3.22) 

 

 

 

 

 

 

 

 

 

 

 

 
(3.23) 



 This pulse is band-limited. Its Fourier transform is                   (3.24)

 

Figure 3.10 Sic pulse (minimum bandwidth pulse) and its Fourier transform. 

 

 Unfortunately, this pulse has infinite width in time and decays slowly.

 

Nyquist Pulse 
Nyquist increased the width of the spectrum in order to make the pulse fall off more rapidly. 

The Nyquist pulse has spectrum width (1/2) (1 + r)Rb, where 0 < r < 1. 
 

Figure 3.11 Proposed Nyquist pulse 
 

If we sample the pulse p(t) at rate Rb = 1/Tb, then  

(3.25) 
 

The Fourier transform of the sampled signal is (3.26) 

 

Since we are sampling below the Nyquist rate 2Rb, the shifted transforms overlap. 

Nyquist’s criterion requires pulses whose overlaps add to 1 for all f. 

 
Figure 3.12 Sampled Nyquist pulse 

 

For parameter r with 0 < r < 1, the resulting pulse has bandwidth                (3.27) 

The parameter r is called roll-off factor and controls how sharply the pulse spectrum declines above 

(1/2)Rb. 

 

There are many pulse spectra satisfying this condition. e.g., trapezoid: 



 
 

 

 

(3.28) 
 
 

A trapezoid is the difference of two triangles. Thus the pulse with trapezoidal Fourier transform is the 

difference of two sinc2 pulses. 

Example: for r = 1/2 , 

  (3.29) 

So the pulse is, 

   (3.30) 

This pulse falls off as 1/t2 

 

Nyquist chose a pulse with a “vestigial” raised cosine transform. This transform is smoother than a 

trapezoid, so the pulse decays more rapidly. 

The Nyquist pulse is parameterized by r. Let fx = rRb/2. 
 

Figure 3.13 Vestigial spectrum 

 

Nyquist pulse spectrum is raised cosine pulse with flat porch. 
 
 

 

 

 

 

 
The transform P(f) is differentiable, so the pulse decays as 1/t2. 

Special case of Nyquist pulse is r = 1: full-cosine roll-off. 

(3.31) 

 

 

 

 

 

(3.32) 



This transform P(f) has a second derivative so the pulse decays as 1/t3. 

  (3.33) 
 

Figure 3.14 Pulses satisfying the Nyquist criterion 
 

Controlled ISI (Partial Response Signaling) 

We can reduce bandwidth by using an even wider pulse. This introduces ISI, which can be 

canceled using knowledge of the pulse shape. 
 

Figure 3.15 Duo-binary pulse 

 

The value of y(t) at time nTb is an-2 + an-1 . Decision rule: 

  (3.34) 

A related approach is decision feedback equalization: once a bit has been detected, its contribution 

to the received signal is subtracted. The ideal duo-binary pulse is 

 

 
(3.35) 

 

The Fourier transform of p(t) is 

  (3.36) 

The spectrum is confined to the theoretical minimum of Rb/2. 



 
Figure 3.16 Minimum bandwidth pulse that satisfies the duo-binary pulse spectrum 

 

Zero-ISI, Duobinary, Modified Duobinary Pulses 

Suppose pa(t) satisfies Nyquist’s first criterion (zero ISI). Then 

pb(t) = pa(t) + pa(t – Tb) (3.37) 

 

is a duo-binary pulse with controlled ISI. By shift theorem, 

Pb(f) = Pa(1 + e−j2Tbf  ) (3.38) 

Since Pb(Rb/2) = 0, most (or all) of the pulse energy is below Rb/2. We can eliminate unwanted DC 

component using modified duo-binary, where pc(−Tb) = 1, pc(Tb) = −1, and pc(nTB) = 0 for other 

integers n. 
 

pc(t) = pa(t + Tb) – pa(t – Tb)  Pc(f) = 2jPa(f) sin 2Tbf (3.39) 

The transform of pc(t) has nulls at 0 and ±Rb/2. 



 

Figure 3.17 Zero-ISI, Duobinary, Modified Duobinary and other Pulses 

Partial Response Signaling Detection 

Suppose that sequence 0010110 is transmitted (first bit is startup digit). 

Digit xk 0 0 1 0 1 1 0 

Bipolar amplitude - -1 -1 1 -1 1 1 -1 

Combined amplitude  -2 0 0 0 2 0 

Decoded values  -2 0 2 0 0 2 

Decode sequence  0 1 0 1 1 0 

 

Partial response signaling is susceptible to error propagation. If a nonzero value is mis-detected, 

zeros will be mis-detected until the next nonzero value. 

Error propagation is eliminated by pre-coding the data: pk = xk  pk-1. 
 

Figure 3.18 Duo-binary pulse generator 

 
Scrambling 

In general, a scrambler tends to make the data more random by removing long strings of 1’s or 0’s. 

Scrambling can be helpful in timing extraction by removing long strings of 0’s in data. Scramblers, 

however, are primarily used for preventing unauthorized access to the data, and are optimized for 

that purpose. Such optimization may actually result in the generation of a long string of zeros in 

the data. The digital network must be able to cope with these long zero strings using zero 
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suppression techniques as discussed in case of high density bipolar (HDB) signaling and binary 

with 8 zeros substitution (B8ZS) signaling. 
 

 

 

 

 

 

 

 
 

 

 

 

 
 

S T T R 
(a) (b) 

Figure 3.19 Scrambler and Descrambler 

 
 

Above figure 3.19 shows a typical scrambler and descrambler. The scrambler consists of a 

feedback shift register, and the matching descrambler has a feed-forward shift register as indicated. 

Each stage in the shift register delays a bit by one unit. To analyze the scrambler and the matched 

descrambler, consider the output sequence T of the scrambler [figure 3.19 (a)]. If S is the input 

sequence to the scrambler, then 

 

S  D3T  D5T = T (3.40) 

 

Where, D represents the delay operator; i.e., DnT is the sequence T delayed by ‘n’ units. The 

symbol  indicates modulo 2 sum. Now recall that the modulo 2 sum of any sequence with itself 

gives a sequence of all 0’s. Modulo 2 addition of (D3  D5)T to both sides of the above equation, 

we get 
 

S = T  (D3  D5)T 

= [1  (D3  D5)]T 

= (1  F)T ; where, F = D3  D5 (3.41) 

 

To design the descrambler at the receiver side, we start with T, the sequence received at the 

descrambler. Now we can see that received signal after descrambling i.e. R is same as S. 

 

R = T   (D3  D5)T = T   FT = (1  F)T = S (3.42) 

 
Regenerative Repeater 

Basically, a regenerative repeater performs three functions. 
1. Reshaping incoming pulse by means of equalizer 

2. The extraction of timing information required to sample incoming pulses at optimum instants. 

3. Decision making based on the pulse samples. 

 

The schematic of a repeater is shown in the following figure. A complete repeater also includes 

provision for the separation of DC power from AC signals. This is normally accomplished using 
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transformer by coupling the signals and bypassing the DC around transformers to the power supply 

circuitry. 

 

 

 
 

 

Noise 
 
 

Figure 3.20 Regenerative Repeater 

 
Preamplifier 

Preamplifier, as the name suggests, is an electronic device to amplify very weak signal. The output 

from it becomes the input for another amplifier. 

A signal is modulated by superimposing a known frequency on it and the amplifier is set to detect 

only those signals on which the selected frequency is superimposed. Such an amplifier is known as 

lock-in-amplifier. Noise not modulated by the selected frequency will not be amplified. Therefore 

it will be filtered off. 

 
Equalization 

As discussed in the Pulse Shaping, a properly shaped transmit pulse resembles a sinc function, and 

direct superposition of these pulses results in no ISI at properly selected sample points. 

In practice, however, the received pulse response is distorted in the transmission process and may 

be combined with additive noise. Because the raised cosine pulses are distorted in the time 

domain, you may find that the received signal exhibits ISI. If you can define the channel impulse 

response, you can implement an inverse filter to counter its ill effect. This is the job of the 

equalizer. See figure 9 below, which depicts the response to a single transmit pulse at various 

points in the system. 
 

 

Figure 3.21 Transmission process with pulse responses example 

 

The original rectangular pulse is shaped by the raised cosine filter before transmission. This 

ensures that the sampled spectra do not alias and therefore there is no ISI. This third waveform 



portrays the distorted impulse response received at the input of the equalizer. This distortion can be 

caused by spectral shaping due to a non-flat frequency response or multipath reception of the 

channel. This distortion can be removed by applying a filter that is the exact inverse (multiplicative 

inverse in spectral domain) of the channel frequency response. 

 
Equalizers 

 

Figure 3.22 Block diagram of a tap delay equalizer 

Zero Forcing Equalizer 

  (3.43) 

 

 

 
(3.44) 

 
In the above matrix represents 2N + 1 independent equations as many number of tap weights Ci 

which are uniquely determined by solving the matrix. 

Mean square and Adaptive Equalizer 



Eye Diagrams 

Polar Signaling with Raised Cosine Transform (r = 0.5) 

Figure 3.23 Eye diagram of Polar Signaling with Raised Cosine Transform (single window) 

  (3.45) 

Polar Signaling with Raised Cosine Transform (r = 0.5). The pulse corresponding to P(f) is 

  (3.46) 

 

 

 

 

Figure 3.24 Eye diagram of Polar Signaling with Raised Cosine Transform (multiple window) 

Eye Diagram Measurements 

 Maximum opening affects noise margin 

 Slope of signal determines sensitivity to timing jitter 

 Level crossing timing jitter affects clock extraction 

 Area of opening is also related to noise margin 



 
Figure 3.25 Measurement using Eye diagram 

 
Timing Extraction 

The received digital signal needs to be sampled at précised instants. This requires a clock signal at 

the receiver in synchronism with the clock signal at the transmitter (Symbol or bit 

synchronization). Three general methods of synchronization exist. 

1. Derivation from a primary or a secondary standard (e.g. transmitter and receiver slaved to a 

master timing source) 

2. Transmitting a separate synchronizing signal (Pilot clock) 

3. Self synchronization, where the timing information is extracted from the received signal itself. 

 
The first method is suitable for large volume of data and high speed communication systems 

because of its high cost. In the second method, part of the channel capacity is used to transmit 

timing information and is suitable when the available capacity is large compared to the data rate. 

The third method is a very efficient method of timing extraction or clock recovery because the 

timing is derived from the digital signal itself. 

 
Timing Jitter 

Variations of pulse positions or sampling instants cause timing jitter. This results from several causes, 

some of which are dependent on the pulse pattern being transmitted where as others are not. The 

former are cumulative along the chain of regenerative repeaters because all the repeaters are affected in 

the same way, where as the forms of jitter are random from regenerator to regenerator and therefore 

tend to partially cancel out their mutual effects over a long-haul link. Random forms of jitter are caused 

by noise, interference, and mistuning of clock circuits. The pattern-depend jitter results from clock 

mistuning, amplitude-to-phase conversion in the clock circuit, and ISI, which alters the position of the 

peaks of the input signal according to the pattern. The r.m.s. value of the jitter over a long chain of ‘N’ 

repeaters can be shown to increase as √N . 

Jitter accumulation over a digital link may be reduced by buffering the link with an elastic store and 

clocking out the digital stream under the control of highly stable PLL. Jitter reduction is necessary 

about every 200 miles in a long digital link to keep the maximum jitter with reasonable limits. 



A Baseband Signal Receiver  

 

 

 

 

 

 

 

 
 

Figure 3.26 Transmitted pulse with noise 
 
 

The above figure explains that noise may cause an error in the determination of a transmitted voltage level.  

Figure 3.27 A receiver for a binary coded signal. 
 

Peak SNR 

 
Figure 3.28 (a)The signal output (b) the noise output of the integrator as shown in figure 3.27 

 
 

(3.47) 

                                       (3.48) 

 
  (3.49) 



The variance of noise is no(T) is known to us and is 

                               (3.50) 

  (3.51) 

Figure of merit is 

   (3.52) 

Probability of Error 

Figure 3.29 The Gaussian probability density of the noise sample no(T) 

 

  (3.53) 
 
 

 
 

 

 
 

(3.54) 
 

 

 

 

 

 
 

 

Figure 3.30 Variation of Pe versus Es/



Optimum Threshold 

Figure 3.31 Decision threshold when apriori probability are (a) equal (b) unequal 

 

 

 
(3.55) 

  (3.56) 

 

(3.57) 
 
 

 
(3.58) 

 
 

  (3.59) 

(3.60) 



Optimum Receiver 

We assume that the received signal is a binary waveform. One binary digit (bit) is represented by a 

signal waveform s1(t) which persists for time T, while the other bit is represented by the waveform s2(t) 

which also lasts for an interval T. For example, in the case of transmission at baseband, as shown in 

Fig. 3.27, s1(t) = +V, while s2(t) = –V; for other modulation systems, different waveforms are 

transmitted. For example, for PSK signaling, s1(t) = A cos ω0t and s2(t) = –A cosω0t; while for FSK, 

s1(t) = A cos (ω0 + )t and s2(t) = A cos (ω0 – )t. 

 

Figure 3.32 A receiver for binary coded signaling 

 
An error [we decide s1(t) is transmitted rather than s2(t)] will result if 

 

 

  (3.61) 
 

 

The complementary error function is monotonically decreasing function of its argument 

(indicated in Fig. 3.30). Hence, as is to be anticipated, Pe decreases as the difference so1(T) – so2(T) 

becomes larger and as the r.m.s. noise voltage o becomes smaller. The optimum filter, then, is the 

filter which maximizes the ratio 

  (3.62) 

We shall now calculate the transfer function H(f) of this optimum filter. As a matter of 

mathematical convenience we shall actually maximize 2 rather than 



Signal to the optimum filter is p(t)  s1(t) – s2(t) 

Corresponding output signal of the filter is po(t)  so1(t) – so2(t) 

Let P(f) and Po(f) be the Fourier transforms, respectively, of p(t) and po(t). Then 

 
Po(f) = H(f)P(f) (3.63) 



 

(3.64) 

 

(3.65) 
 

Normalized output noise power                      (3.66) 

 

 
 

(3.67) 

Schwarz inequality defines              (3.68) 

The equal sign applies when  X(f) = KY*(f) (3.69) 

                        (3.70) 

Or, (3.71) 
 

 

 

Y(f) ÷ 
1

 
ƒGn(f) 

 

P(f)ej2nTf 

(3.72) 

 

The ratio p2(T)/o2  will attain its maximum value when (3.73) 
o o 

 

Optimum Filter using Matched Filter 
An optimum filter which yields a maximum ratio p2(T)/o2 is called a matched filter when the input 

o o 

noise is white. In this case Gn(f) = /2, and equation (3.73) becomes 
 

 
 

 

 
 

 

  

 

 
(3.74) 

 

 

 
(3.75) 

 

 

(3.76) 



 
 

 

 

 

 
 

 
 

Figure 3.33 

(3.77) 

 

  
 

 

Probability of Error of Matched Filter 

 

 
(3.78) 

 

 

From Parseval’s theorem,                                 (3.79) 

  (3.80) 

The optimum choice of s2(t) is as given by s2(t) = – s1(t) (3.81) 

Hence, (3.82) 
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Integrator as Matched Filter 

(3.83) 

 

 
 

(3.84) 

 

When we have, (3.85) 

Impulse response of the matched filter is, h(t) = 2K [s1(T — t) — s2(T — t)] (3.86) 

Hence,  h(t) = 2K (2V)[u(t) — u(t — T)] (3.87) 
y 

The inverse transform of h(t), that is, the transfer function of the filter, becomes, 

 

  (3.88) 

The first term in equation (3.88) represents an integration beginning at t = 0, while the second term 

represents an integration with reverse polarity beginning at t = T. 

 
Optimum Filter using Correlator 

 
 

 

Figure 3.34 A coherent system of signal reception 
 

 

If h(t) is the impulsive response of the matched filter, then 
 

 

 

 
(3.89) 

 
(3.90) 

 

 
(3.91) 



 

(3.92) 

  (3.93) 
 

(3.94) 

so(T) = 2K f
T 

si (h)[s1(h) — s2(h)]dh (3.95) 
 

y O 

Where, si() is equal to s1() or s2() 
Similarly, no(T) = 2K f

T 
n (h)[s1(h) — s2(h)]dh (3.96) 

 

y O 

Thus so(t) and no(t), as calculated from equations (3.89) and (3.90) for the correlation receiver, 

and as calculated from equations (3.95) and (3.96) for the matched filter receiver, are identical. 

Hence the performances of the two systems are identical. 

 
Optimal Coherent Reception: PSK 

The input signal is 

   (3.97) 

In PSK, s1(t) = – s2(t), Equation (3.84) gives the error probability as in base band transmission 

 

    
  (3.98) 

 
Imperfect Phase Synchronization (3.99) 

 

 

 

 

If the overlap is in the other direction, integration extends from – to T – 

(3.100) 

 

 

 

(3.101) 
 

Correspondingly, (3.102) 

 
If  = 0.05T, the probability of error is increased by a factor 10 

If both phase error and timing error are present, then 



 

Probability of error (3.103) 

 

 
Optimal Coherent Reception: FSK 

 

  (3.104) 

Local waveform is                                        (3.105) 

 

 
We start with (3.106) 

 

 

 

       (3.107) 
 

 

 
 

 

Largest value when  is selected so that 2T = 3/2 
 

 

Where, the signal energy is Es = A2T/2 

(3.108) 

 

 

 

 

(3.109) 

 

 

 
(3.110) 

 
 

 
 
 

(3.111) 

Comparing the probability of error obtained for FSK [Eq. (3.110)] with probability of error obtained for 

PSK [Eq. (3.98)], we see that equal probability of error in each system can be achieved if the signal energy 

in the PSK signal is 0.6 times as large as the signal energy in FSK. As a result, a 2 dB increase in the 

transmitted signal power is required for FSK. Why is FSK inferior to PSK? The answer is that in PSK,   

s1(t) = – s2(t), while in FSK this condition is not satisfied. Thus, although an optimum filter is used in each 

case, PSK results in considerable improvement compared with FSK. 



Optimal Coherent Reception: QPSK 
 

 

 

 

 

 

 
 

A cos ω0t 

 
 
 
 
 
 
 
 

A sin ω0t 

 
 

Figure 3.35 A phasor diagram representation of the signals in QPSK 

 

Figure 3.36 A correlation receiver for QPSK 
 

We note from Fig. 3.35, that the reference waveform of correlator 1 is an angle  = 450 to the axes of 

orientation of all of the four possible signals. Hence, from equation (3.99), since (cos 450)2 = ½, the 

probability that correlator 1 or correlator 2 will make an error is 
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Transmitted signals are 

 

 

 

 

 

 

 

Fig.4.1 Balanced Modulator 

VBPSK t   b(t) 2Ps cosot 

 

VH t   VBPSK t   2Ps cosot 

 
VH t   VBPSK t   2Ps (cosot   ) 

 

(4.1) 

 
(4.2) 

= - 2Ps cosot 

 

In BPSK the data b(t) in a stream of binary digit with voltage levels which as a matter of 

convenience, we take +1 V and -1 V. So BPSK can be written as 

VBPSK t   b(t) 2Ps cosot (4.3) 
 

Transmission 
 

This VBPSK (t) signal is transmitted through the channel. While it moves in the transmission path of 

the channel, the phase of the carrier may be changed at the output of the receiver. So the BPSK 

signal  received  at  the  input  of  the  receiver  can  be  taken  as  VBPSK(t) = b(t)ƒ2Pccos (mot + $) 

where t   / o is the time delay. 
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Fig. 4.2 Synchronous demodulator 

 

Spectrum 
 

The waveform b(t) is a NRZ binary waveform which makes an excursion between 

The PSD of this waveform 
 

Gb(f)  PsTb(
sin fTb )2 

b 

and - . 

 

 
(4.5) 

The BPSK waveform is the NRZ waveform multiplied by 2Ps cosot . Thus the power spectral 

density of the BPSK signal is 
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 (4.6) 

 

Simultaneous bit transmission and thereafter overlapping of spectra is known as inter-channel 

interference. Restricting the overlapping by considering the principal lobe to transmit 90% of 

power ultimately cause inter-symbol interference. 

 

Geometrical representation of BPSK signals: 
 

When BPSK signal can be represented, in terms of one orthogonal signal 
 

u1 t   2 /  Tb cosot as 
VBPSK t    PsTb b(t)

 2 
cosot   PsTb b(t) u1(t) (4.7) 
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DPSK(Differential Phase Shift Keying) 

 

In BPSK receiver to regenerate the carrier we start by squaring 

 
 

b(t) 2Ps cosot .but when the 

received signal were instead b(t) 2Ps cosot , the recovered carrier would remain as before. 

Therefore we shall not be able to determine whether the received baseband is transmitted signal 

b(t) or its negative i.e. -b(t). DPSK and DEPSK are modification of BPSK which have the merit 

that they eliminate the ambiguity about whether the demodulated data is actual or inverted. In 

addition DPSK avoids the need to provide the synchronous carrier required at the demodulator for 

detecting a BPSK signal. 
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Fig.4.3 generation of DPSK 

 

 
2Ps cosot 

 

 

 

 

 
(4.10) 

b(0) cannot be found unless we know d(0) and b(-1). Here we have b(0) = 0, b(+1) = 0 so d(1) 

should be 0. 

In this Fig. 4.3, d(0) & b(-1) is not shown. Here we have chosen b(0) = 0. If we choose b(0) = 1, 

then there is no problem in detection of b(t). 

VDPSK (t)  b(t) 2Ps cosot (4.11) 
=  2Ps cosot 

 

Transmission 
 

When VDPSK(t) is transmitted from the generator to the channel, at passes through the channel, then 

b(t) may be changed to –b(t) before reaching receiver. 

Receiver 
 

b(t)b(t-Tb) = 1, if d(t) = 0 

but b(t)b(t-Tb) =-1, if d(t) = 1 
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Fig. 4.6 Receiver of DPSK 

 

Advantage of DPSK over BPSK 
 

1. Local carrier generation not required and receiver circuit is simple. 

2. If whole of the bits of b(t) is inverted then also correct d(t) can be recovered. 

 

Disadvantage 
 

1. Noise in one bit interval may cause errors to two bit determination that is a tendency for bit 

errors to occur in pairs. The single errors are also possible. 

2. Specrum of DPSK is same as BPSK .the geometrical representation of DPSK is same as BPSK. 

 

DEPSK (Differentially Encoded Phase Shift Keying) 
 

DPSK demodulator requires a device which operates at the carrier frequency and provides a delay 

of Tb. Differentially encoded PSK eliminates the need for such a piece of hardware Transmitter or 

generator is same as DPSK 

 

b(t) from synchronous demodulator 

 

 

d(t)= b(t)  b(t-Tb) 

 

b(t-Tb) 

 

Fig 4.7a Generation of DEPSK 

 

QPSK (Quadrature Phase Shift Keying ) 
 

The transmission bandwidth of bit NRZ signal is fb. So the transmission rate is 

2fbbps.Hence to transmit BPSK signal the channel must have a bandwidth of 2fb. QPSK has been 

formulated to allow the bits to be transmitted using half the bandwidth. D-flip flop is used in 

QPSK transmitter to operate as one bit storage device. 
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Fig 4.7b Generation of QPSK 
 

Transmission 
 

Due to finite distance between generator and receiver the signal available at receiver may have 

some phase change so, 

VQPSK (t)  k1 

Reception 

Ps bo (t)sin(w0t   )  k2 Ps be (t) cos(w0t   ) (4.12) 
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Fig 4.8 Reception of QPSK 
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Samples are taken alternatively from one and the other integrator output at the end of each 

bit time Tb and these samples are half in the latch for the bit time Tb and these samples half in the 

latch for the bit time Tb. Each individual integrator output is sampled at intervals 2Tb. The latch 

output is the recovered bit stream b(t). 

 

Spectrum: 

 

The waveform bo(t) or be(t) (if NRZ ) is binary waveform makes an excursion  and  . The 

PSD of this waveform 
 sin  f (2Tb ) 

2
 

 

Gbo 
(f)  Gbe 

(f)  Ps (2Tb ) 

  f (2Tb ) 




(4.13) 

 

When QPSK signal is multiplied by cosot . Then the PSD of the QPSK signal is 

 sin ( f    fo )(2Tb ) 

2     
 sin  ( f    fo )(2Tb ) 
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 GQPSK (f)  PsTb 
       (4.14)   ( f    fo )(2Tb )        ( f    fo )(2Tb )   
 



Symbol versus bit transmission 
 

In BPSK we deal with each bit individually in its duration Tb. In QPSK we lump two bits together 

to form what is termed a symbol. The symbol can have any one of four possible values 

corresponding to the two bit sequence 00, 01, 10 and 11. We therefore arrange to make four 

distinct signals available for transmission. At the receiver each signal represents one symbol and 

correspondingly two bits. When bits are transmitted, as in BPSK, the signal changes occur at the 

bit rate. When symbols are transmitted the changes occur at the symbol rate which is one half the 

bit rate. Thus the symbol time is Ts = 2Tb (OQPSK). Ts = Tb(QPSK) 

 

Geometrical representation of QPSK signals in signal space 
 

Four symbols are four quadrature signals. These are to be represented in signal space. One 

possibility representing the QPSK signal in one equation is 
 

VQPSK  = ƒ2Pccos [mot + (2N + 1)G] ; m=0, 1, 2, 3 (4.15) 

VQPSK  cos[(2m 


1) 
4 

]cosw0 t  sin{(2m 


1) 
4
}sinw0 t (4.16) 

 

To represent this signal in signal space, two ortho-normal signals are be selected. They can be 

 
U (t)  cos w  t and U (t)  sin w t 

1 0 2 0 

 

So V
QPSK 

can be written as 

 
  

 
  VQPSK  = [ƒPcTcos (2N + 1)G]J2 cosmOt — [ƒPcTsin (2N + 1)G]J2 sinmOt (4.17) 

4 T 4 T 

 

bo and be take values as +1 or -1. So we can write the same VQPSK signal as 

2Ps 2Ps 





Es 

PsTb 

b 

VQPSK  Eb be (t).u1 (t)  Eb bo (t).u2 (t) (4.18) 
 

Where, 

 
be (t) 


2 cos(2m 1) 
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(4.19) 

bo (t)   2 sin(2m 1) 



4 
 

In the above equations T  2Tb . Working at above signals four symbols can be shown in signal 

space as shown below. Four dots in the signal space represents four symbol. The distance of signal 

point form the  origin is , which in the square root of the signal energy associated with the 

symbol. i.e Es  PsTs  2PsTb . The signal points which differ in a signal bit are separates by the 

distance d   Eb . Noise immunity in QPSK is same as BPSK. 
 

M-ary Phase shift keying 
 

In BPSK we transmit each bit individually. Depending on Whether b(t) is logic 0 or logic 

1, We transmit one or another of sinusoid for the bit time Tb , the sinusoids differ in phase by 

2 / 2  180. 
. In QPSK We lump together two bits. Depending on which of the four two-bit words 

develops, we transmit one or another of four sinusoids of duration 2 / M ,the sinusoids differing 

in phase by amount 2 / 4  90. 
. The scheme can be extended. Let us lump together N bits so that 

in this N- bit symbol, extending over the NT , there are 2
N 
 M possible symbol as shown in Fig. 

4.9. Now let us represent the symbols by sinusoids of duration NTb = Ts which differ from one 

another by the phase 2 / M . Hardware to accomplish this M-ary communication is available. So 

VM aryPSK ( cosm )cos w0t ( 2Ps sinm )sin w0t m 0,1,2,3M1 (4.20) 
 

Where,   =  (2m  1) 
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Fig 4.9 Spectrum of M-ary PSK 

The co-ordinate are the orthogonal waveforms u (t)  cos w t and   u (t)  sin w t . 
1 0 2 0 

 

VM aryPSK  ( cosm ) cos w0t  ( sin m ) sin w0t 

 
(4.21) 

 

 Pe   cos w0t  Po  sin w0t 

where, Pe      2Ps   cosm 

Po  sin m 
(4.22) 

 

Spectrum  
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 fTs 
(4.23) 

 

When carrier multiplied to bit , the resultant spectrum is centered at the carrier frequency 

and extends normally over a BW   B  
2
 

Ts 

 2 fs  
2 fb .
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The distance between symbol signal points 
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(4.24) 
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M-ary PSK Transmitter and Receiver 
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Fig 4.10 Transmission of M-ary PSK 
 
 

Finally v(sm ) is applied as a control input to a special type of constant amplitude 

sinusoidal signal source whose phase m is determined by v(sm ) . Altogether, then the output is 

fixed amplitude, sinusoidal waveform, whose phase has a one to one correspondence to the 

assembled N-bit symbol. The phase can change once per symbol time. 
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Fig 4.11 Reception of M-ary PSK 
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2Ps 
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2Ps PL (t) sin Lt 

PsTb PL (t) 

The integrator outputs are voltages whose amplitudes are proportional to Ts Pe and Ts Po 

respectively and charge at the symbol rate. These voltages measure the components of the received 

signal in the directions of the quadrature phasors sin w0t & cos w0t . Finally the signals Ts Pe and 

Ts Po are applies to advice which reconstructs the digital N-bit signal which constitutes the 

transmitted signal. 

 
BFSK (Frequency shift keying) 

 

The BFSK signal can be represented for binary data waveform b(t) as 
 

VBFSK (t)  cos(w0t  b(t)t) (4.25) 
 

Where b(t)=+1 or -1 corresponding to the logic level 0 and 1. The transmitted signal is of 

amplitude and is either 
 

VBFSK (t)  VH  (t) 

VBFSK (t)  VL (t) 

cos(w0    )t 

cos(w0    )t 

 
(4.26) 

 

And thus fhas an angular frequency w0   or w0   with  a constant offset from the 

normal carrier frequency w . So, w = w   & f  f  
 
 f  f = w   
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Fig 4.12 Transmission of BFSK 
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The BFSK signal is applied to two band pass filters one with frequency at fH the other at 

fb . Here we have assumed, that fH - Ts Po =2 fb .The filter frequency ranges selected do not overlap 

and each filter has a pass band wide enough to encompass a main lobe in the spectrum of BFSK. 
 

Hence one filter will pass nearby all the energy in the transmission at fL . The filter outputs 

are applied to envelope detectors and finally the envelope detector outputs are compared by a 

comparator. 
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Fig 4.13 Reception of BFSK 

 

When noise is present, the output of the comparator may vary due to the system response to 

the signal and noise. Thus, practical system use a bit synchronizer and an integrator and sample the 

comparator output only once at the end of each time intervalTb . 
 

Spectrum(BFSK) 
 

In terms of the variable 

 
 

PH (t) & PL (t) the BFSK signal can be written as 
 

VBFSK (t)  2Ps .PH .cos(wH t  H )  2Ps .PL .cos(wLt  L ) (4.27) 
 

Here each of two signals are of independent and random, uniformly distributed phase. E 

ach of the terms in above equation looks like the signal 2Ps b(t) cosw0 t which we encountered in 

BPSK, but there is an important difference. In the BPSK case, b(t) is bipolar(it alternates between 

+1 and-1), while in the present case PH & PL are unipolar (it alternates between+1 and 0). We may 

however, rewrite PH & PL as the sum of a constant and a bipolar variable, i.e. 
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In the above equation PH (t) & P , (t) are bipolar, alternating between +1 and -1 and are 

complementary. We have then 
 

V (t)  cos(w t  )  cos(w t  ) 
Ps 

2 
P 

, 
cos(w t  ) 

Ps 

2 
P 

, 
cos(w t  ) (4.29) 

 

The first terms in above equation produce a power spectral density which consists of two impulses, 

one at fH and one at fL . The last two terms produce the spectrum of two binary PSK signals, one 

centered at---- and one about fH   fL   2 fb  is assumed. For this separation  2 fb  between   fH  and  fL 

we observe that the overlapping between the two parts of the spectra is not large and we may 

expect to be able, without excessive difficulty, to distinguish the levels of the binary waveforms 

b(t). in any event, with this separation the bandwidth of BFSK is, BWBFSK  4 fb 

 

Geometrical representation of orthogonal BFSK in signal space 
 

We know that any signal could be represented as c1 u1(t) + c2 u2 (t) Where u1 (t)  cos w 0 t and 

u2 (t)  sin w 0 t are the orthogonal vectors in the signal space. u1(t) and u2 (t) are orthogonal 

over the symbol interval Ts and if the symbol is single bit Ts  Tb .The coefficients c1 & c2 are 

constants. In M-ary PSK the orthogonality of the vectors u1 and u2 results from their phase 

quadrature. In the present case of BFSK it is appropriate that the orthogonality should result from a 

special selection of the frequencies of the unit vectors. Accordingly, with m and n integers, let us 

establish unit vectors. 
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(4.30) 

u (t)  sin w t 
2 0 

 

 

 
 

In which, as usual, fb 

 
 

1 
. The vectors 

Tb 

 

 
u1 and 

 

 
u2 at the mth & nth and harmonics of the 

fundamental frequency fb . As we are aware, from the principles of Fourier analysis, different 

harmonics( m  n ) are orthogonal over the interval of the fundamental period Tb 
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. It now the 
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Then corresponding signal vectors are 
 

VH (t)  Eb u1 (t) and VL (t)  Eb u2 (t) 
 

The signal VH (t) & VL (t) , like vectors are orthogonal. The distance between signal end points is 

therefore d  which is considerably smaller than the distance separating end points 

(i.e d  ) of BPSK signal, which are antipodal. 
 

 

If we consider Non-orthogonal BFSK and (w H  w L ) Tb  
3

2 

 

then distance d 



1.  Not be as effective as BPSK in the presence of noise. Because in BFSK, since carrier 

is present in the spectrum and takes some energy, information bearing term is there by 

diminished. 

2. d is less so Pe is more & SNR is less. 

3. BW requirement is higher. 
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Fig 4.14 M-ary FSK 

 

At the transmitter an N-bit symbol is presented for each Ts 

 
 

 

 

 

 

 

 

 

 

 

 
to an N-bit D/A converter. The 

converter output is applied to a frequency modulator, which generates a carrier waveform whose 

frequency is determined by the modulating waveform. The transmitted signal for the duration of 
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fb 

the symbol interval, is of frequency f0, or f1, or fm1 , where M  2
N

 M  2
N 

. At the receiver, 

the incoming signal is applied to M parallel band pass filter with carrier frequency f0 , f1 ...... fM 1 

and each followed by an envelope detector. The envelope detectors apply their outputs to a device 

which determines which of the detector indication is the largest and transmit that envelope output 

to an N-bit A/D converter. In this scheme the probability of error is minimized by selecting 

frequencies f0, f1...... fM 1 so that the M signals are mutually orthogonal. One common employed 

arrangement simply provides that the carrier frequency be successive even harmonics of the 

symbol frequency fs  1/ Ts . Thus the lowest frequency, say f0  Kfs , while f1  (K 2) fs etc. in 

this case the spectral density patterns of the individual possible transmitted signals overlap, which 

is an extension of BFSK. It is clear that to pass M-Ary FSK the required spectral range is 

B  2Mfs 

 

Since, 
fs  

N 

 
 

 

 
and 

 

 
M  2

N
 

(4.31a) 

 

So, B  2
N 1 

fb / N (4.31b) 
 

M-Ary FSK required a considerably increased BW in comparison with M-Ary PSK. 

However as we shall see the probability of error for M-Ary FSK decreases as M increases, while 

for M-Ary PSK, the probability of error increases with M. 

Geometrical Representation of M-Ary FSK in Signal Space 
 

The case of M-Ary orthogonal FSK signal is extension of signal space representation for 

the case of orthogonal binary FSK. We can simply conceive of co-ordinate system with M 

mutually orthogonal co-ordinate axes. The signal vectors are parallel to these axes. The best we 

can do pictorially is the 3-dimensional case. The square of the length of the signal vector is the 

normalized energy and the distance between the signal points is 

 

d   (4.32) 

 
This value of d is greater than the value of d calculated for M-Ary PSK. 

 

Minimum Shift Keying (MSK) 
 

The wide spectrum of QPSK is due to the character of baseband signal. This signal consists of 

abrupt changes, and abrupt changes give rise to spectral components at high frequencies. The 

problem of interchannel interference in QPSK is so serious that regulatory and standardization 

energies such as FCC and CCIR will not permit these system will be used except with band pass 

filtering at carrier frequencies to suppress the side lobe. If we try to pass the baseband signal 

through a low pass filter to suppress the insignificant side lobes (the main lobe contains 90% of 

signal energy). Such filtering will cause ISI. 



2Ps 2Ps 

2Ps 

0 0 0 0 

The QPSK is a system which the signal is of constant amplitude, the information content 

being borne by phase changes. In both QPSK and OQPSK are abrupt phase changes in the signal. 

In QPSK these changes can occur at the symbol rate 1/ Ts   1/ 2Tb   and can be as large as 180o . In 

OQPSK phase changes of 90o can occur at the bit rate. Such abrupt phase changes cause many 

problems. 

There are two difference between QPSK and MSK 
 

1. In MSK the baseband waveform, that multiplies the quadrature carrier, is much smoother 

than the abrupt rectangular wave form of QPSK. While the spectrum of MSK has a main 

centre lobe while as 1-5 times as wide the main lobe of QPSK. 

2. The wave form of MSK exhibits phase continuity that is there are no abrupt changes in 

QPSK. As a result we avoid the ISI caused by non-linear amplifier. 

The staggering which is optimal in QPSK is essential in MSK. MSK transmitter needs two 

waveforms sin 2 (t / 4Tb ) and cos 2 (t / 4Tb ) to generate smooth baseband. The MSK transmitted 

signal is 
 

VMSK (t)  2Ps [be (t).sin 2 (t/ 4 Tb )]cosw0 t  2Ps [bo (t).cos 2 (t/ 4 Tb )]sinw0 t (4.33) 
 

suppose 2 / 4Tb  . then we can rewrite the above equation as 
 

VMSK (t)  2Ps [be (t).sin t]cos w0t  2Ps [bo (t).cos t]sin w0t (4.34) 
 

The above equation to be modified form of OQPSK, which we can call “shaped QPSK”. We can 

call apparent that MSK is an FSK system. 
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VMSK (t)  2Ps CH (t).sin wH t  2Ps CL (t).sin wLt (4.36) 
 

Here bo  1and be  1, so it can be easily verified that, if bo    be = then CL  0 write 

CH  bo  be  1 , Further if bo  be , then CH  0 and CL  bo  be  1, Thus depending on the 

value of the bits wH and wL in each bit interval, the transmitted signal is at angular frequency ωH 

or at ωL precisely as in FSK and amplitude is always equal to . 



. b 

In MSK, the two frequencies fH and fL are chosen to ensure that the two possible signals are 

orthogonal over the bit intervalTb . That is, we impose the constraint that 
 

Tb 

 sin wH t.sin wct  0 
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(4.36a) 

 

This is possible only when, 2 ( fH   fL )Tb    m and 2 ( fH   fL )Tb    n , (4.37) 

where m and n are integers. In equation (4.35) 
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(4.39) 

 

Eq(38) shows that sincen=1, fH and fL are as close together as possible for orthogonality to prevail. 

It is for this reason that the present system is called “minium shift keying”. Equation(4.39) shows 

that the carrier frequency f0 is an integral multiple of fb/4. Thus 

fH  (m 1). 
fb 

4
 

fL  (m 1). 
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4
 

(4.40) 
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Spectrum of MSK 
 

We see that the base band waveform which multiplies the sinω0t in MSK is 
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Then the PSD for the total MSK signal of equation (4.33) is 
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It is clear from the fig-4.9 that the main loab in MSK is wider than the main lobe in QPSK. In 

MSK the band width required to accommodate this lobe is 2*3/4fb=1.5fb while it is only 1fb in 

QPSK. However in MSK the side lobe are very greatly suppressed in comparision to QPSK. in 

QPSK ,G(f) falls off as 1/f2 while in MSK G(f) falls off as 1/f4 ,It turns out that in MSK 99% of the 

signal power is contained in a band width of about 1.2fb . while in QPSK the corresponding 

bandwidth is about 8fb. 

Geometrical representation of MSK in signal space 
 

The signal space representation of MSK is shown in Fig 4.17a. The orthogonal unit vectors of the 

co-ordinate system are given by uff(t) and ul(t). The end point of the four possible signal vectors 

are indicated by dots. The smallest distance between signal point is d   2 
 

QPSK generates two BPSK signal which are orthogonal to one another by virtue of the fact that 

the respective carriers are in phase quadrature. Such phase quadrature can also be charactarised as 

time quadrature since , at a carrier frequency to a phase shift of π/2 is accomplished by a time shift 

in amount 1/4f0i.e sin 2 f0 (t1/ 4 f0 )  sin(2 f0 t  / 2)  cos 2 f0 t It is of interest to note , in 

contrast, that in MSK we have again two BPSK signal [i.e the two individual terms in equation 

4.36] 



Here, however ,the respective carriers are orthogonal to one another by virtue of the fact that they 

are in frequency quadrature. 

Phase continuity in MSK 
 

A most important and useful feature of MSK in its phase continuity. This matter is illustrated in 

4.17 b in waveform g, h ,and i. Here we have assumed f0=5fb/4 so that 

fH= f0+fb/4= 5fb/4 +fb/4 =1.5fb (4.44) 

fL= f0-fb/4= 5fb/4 -fb/4 =1fb (4.45) 

Carriers of fH and fL are shown in g & h. We also find form eqn(4.35),that for the various 

combination of b0 and be , Vmsk t  / . It is clear that because of staging ,b0 and be don’t change 

simultaneously. The waveform Vmsk(t) is generated in the following way: in each bit interval we 

determine from eqn (4.36a), whether to use the carrier frequency fH or fl and also whether to use 

carrier waveform is to be inverted. Having made such a determination the waveform of Vmsk(t) is 

smooth and exhibits no abrupt changes in phase. Hence, in MSK we avoid the difficulty described 

above (pulse case),which results from the abrupt phase changes in the waveform of QPSK. We 

shall now see that the phase continuity and is a general characteristics of MSK. For this purpose 

we note from table 3 that the Vmsk(t) 

Waveform of eqn(4.35) or eqn (4.36) can be written as 
 

Vmsk (t)  b0(t)   2Ps sin 0t  b0(t)be(t)t  (4.46) 
 

The instantaneous phase  (t) 

 
(t)  0t  b0(t) be (t) t 

of the sinusoidal in eqn (4.46) is given by  

 
(4.47) 

 

For convergence we represent the two phases as  (t) 

 
 (t)  (0  ) t ;bo (t)be (t)=+1 

 
 (t)  (0  ) t ;bo (t)be (t)=-1 

or  (t) , where  

 
(4.48) 

 
(4.49) 

 

b0(t) can take +-1and be(t) can take +-1.The term b0(t) ,be(t) in eqn(4.46) can change at times  

KTb(k inis an integer).but they don’t change at the same time .consider then ,first a change in 

be(t).such a change will cause a phase change which is a multiple of 2 ,which is equivalent to no 

change at all (be(t) can only change when k is even ).when b0(t) changes the phase change in  (t) 

will be an odd multiple of  i.e a phase change of  .but as per eqn (4.46) and its coefficient b0(t) 

which multiplies 2Ps sin(t) .whenever there is a change in b0(t) to change the phase  (t) by  ,the 

coefficient b0(t) will also change the sign of ,yielding an additional  phase change. Hence a 

change in b0(t) produces no net phase discontinuity. 

2Ps 



PsTb 

s2 (t)



Use of signal space to calculate probability of error for BPSK & BFSK 
 

BPSK: in BPSK case,the signal space is one dimensional . The signal s1 & s2 are given by 
 

s1(t)  

 2P b(t) cos t ; 0<t  T (4.50) 

s  (t)
 s 0 b

 

2     


Where  b(t)=+1  for  s1 and b(t)=-1 for s2. Ps is the signal power. If we introduce the unit 

(normalized) 
 

Vector u(t)  cos0t ,then 

 

s1(t)  
 b(t)

 


cos0t (4.51) 
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noise  s1(t)= PS Tb u(t) 

or s2 (t)=  PS Tb  u(t) 
×

 sampled at every Tb 

r 

 
 

u(t) (b)  

 

Fig 4.17 (a) Signal Vector (b) Co-relator Receiver 
 

So signal vectors each of length ,measured in terms of unit vector u(t).processing at the 

correlator receiver, we will generate a response r1 or r2 for s1 and s2 respectively when no. noise is 

present. Now suppose that in some interval, because of noise   a response r is generated.if we find  

r  r1  r  r2 ,then we determine that s1(t) was transmitted. 

The relevant noise in BPSK case is 
 

n(t)  n0 (t) u(t)  n0 cos0t (4.52) 

 

Where n0 is a Gaussian random variable. 
 

Variance of noise power =  0 p  
n Tb 

2  2 
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Variance of noise energy =  0e 
n 

2Tb 

T  
n
 
2 

(4.53) 

 

Let  us  take  S2(t)  was  transmitted.  The  error  probability  ie  the  probability  that the signal is 

mistaken or judged as S1(t).This is possible only when 

by 

n0  .thus error probability Pe is given 

 


P   e 

n0
2

  
2 2 

dn 

 
(4.54) 
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Let us assume x then dx  when 0  then x 



 P  
1
 





   e x2 
dx 

PsTb /


(4.55) 

 

 
1 

erfc( 
PsTb )  

1 
erfc( 

Eb ) 
  

(4.56) 
2  2 



As argument of erfc increases ,its value decreases .ie pe decreases . 

Thus error probability is seen to fall off monotonically with an increase in distance between 

signals. 

BFSK 
 

The unit vectors in BFSK considered are 
 

u1(t)  cos t 



(4.57) 

u2 (t) 
   

cos2t 





1 and 2 are selected in sucha manner that they are orthogonal over the interval Tb .The 

transmitted signal s1(t) and s2(t) are of power Ps are given by 
 

S1(t) 

S2(t) 

2Ps cos1t 

2Ps cos2t 

PsTb cos1t 

PsTb cos2t 

PsTb u1(t) 

PsTbu2(t) 

(4.58) 

(4.59) 

In the absence of noise , when s1(t) is received, then r2=0 and r2  .fors2(t) is received, then 

r1=0 and r1  .The vectors representing r1 and r2 are of length .since the signal is two 

dimensional ,the relevant noise in the present case is 

2   2 0 
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n(t)  n1(t) u1(t)  n2(t) u2(t) 

 

Where n1 and n2 are Gaussian random variable each of variance   2   2   
2 . 

(4.60) 
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noise  s1(t) or s2 (t) sampled at 

every Tb 
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Fig 4.18 Reception in BFSK signal 
 

Now let us suppose that s2(t) is transmitted and the observed voltage at the output of the receiver 
are r1

’ and r ’  .we find r  ’not equal to r  because of the noise n   and  r' 
 0 because of noise then n  . 

2 2 2 2 1 1 

we have locus of points equidistant from r1 and r2 suppose as shown that received voltage r is 

closer to r1 to r2.Then we shall have made an error in estimating which signal was transmitted.It is 

readily apparent that such an error will occur when ever noise 1  r2 2 or (1 2)  .since 

n1 and n2 are uncorrelated ,random variable 

probability density function 

n0  (n1 n2 ) has a variance  2   2   2  n and its 

f (n0 )  
1
 

n2 
/2n 

 

(4.61) 

 

The probability error is 
 

 

Pe  en2 
/2dn     
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2     exdx 

PsTb /2
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erfc( 
PsTb )  
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erfc( 

Eb ) 
  

(4.62) 
2 2 2 2
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erfc( ) 
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(4.63) 

 

For comparison of equation 4.55 & 4.62 should be used. Equation 4.56 & 4.63 are generalized 

equation. 
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	Sources and types of Noise
	Type of noises are

	Power Spectrum of Noise
	Figure 3.2: The power spectrum of the waveform n(c)
	Spectral component of noise at kth instant and within an interval of f can be represented as
	Corresponding power can be written as
	This above explanation indicates noise n (t) is random, Gaussian, and stationary process, whereak, bk, aS, bS, are uncorrelated random Gaussian random variables. The probability density function (pdf) of ck and k can be given as
	The pdf ƒ(ck) describes a Reyliegh distribution, where as pdf ƒ(8k) describes a Uniform distribution.
	The noise n (t) to the filter H (f) is a wideband noise, whereas the noise at the output of the same filter is a narrowband noise n (t). The amplitude variation of this n (t) is small as it contains very few harmonics. If we reduce the pass-band B o...

	Mixing Noise with Sinusoid
	Noise nk(t) mixed with a sinusoidal signal at fo can be written as
	It is already understood that
	In case of actual noise f tends to zero, kf becomes f and therefore, we can write
	Let us single out two spectral components of noise n (t)
	bl sin2n(l∆ƒ — ƒ )t
	We find the difference frequency components as
	np1(t) is the difference component due to  the  mixing of frequencies fo  and kf, while np2(t) is  the difference component due to the mixing of frequencies fo and lf. Now we are interested to find the expected values of the product of np1(t) and np...
	So power at difference frequencies
	Thus mixing noise with a sinusoid signal results in a frequency shifting of the original noise by fo. The variance of this shifted noise is found by adding the variance of each new noise component. This is also applicable to two shifted power spectral...

	Linear Filtering of Noise
	Thermal noise and Shot noise have similar power spectral density which can be approximated as the power spectral density (PSD) of the White noise. This PSD is as shown in figure 3.4.
	Noise power at the filter output, No can be expressed as
	Figure 3.6: A rectangular band‐pass filter

	Noise and Integrator
	Transfer function of an integrator is:

	Noise Bandwidth
	The noise bandwidth (BN) is defined as the bandwidth of an idealized (rectangular) filter which passes the same noise power as does the real filter. As per the definition we can find BN = (/2)fo, where fo is the frequency at which the transfer functi...

	A. M. Receiver
	This receiver as shown in figure 3.8 is capable of processing an amplitude modulated carrier and recovering the baseband signal. The modulated RF carrier + noise is received by the receiving antenna and submitted to Radio frequency (RF) amplifier. Aft...
	No 5ƒM/4 5ƒM
	DSB‐SC: Noise Power
	Figure 3.11:
	SNR, So = Si

	DSB‐SC: Arbitrary Modulated Signal:
	Calculation of Signal power and noise power in DSB‐C DSB‐C: Arbitrary Modulated Signal:
	Let us consider the case, where a carrier accompanies the double sideband signal. Demodulation is achieved synchronously as in SSB-SC and DSB-SC. We note that the carrier increases the total input signal power but makes no contribution to the output s...
	Suppose that the received signal is
	The carrier power, Pc = A2/2; The sidebands are contained in the term Am(t) cos 2fct. The

	Figure of Merit:
	The Square Law Demodulator and Threshold:
	DSB-SC as well as DSB-C can be demodulated using square law demodulator. This avoids requirement of synchronous carrier as in case of synchronous detector, which is costlier. But in case of synchronous detector there is no threshold i.e. as Si/NM decr...
	Above threshold, when Pc/NM is very large,
	Figure 3.15: Performance of a square‐law demodulator illustrating the phenomena of threshold
	If Pc/NM is taken more than 2.9 then the difference in ordinate value will be less than 1 dB and it is still better. When n¯ ¯2¯(¯t¯) ا 1, then Si  ÷ Pc. So, we can say  Si  ≤ 2.9 NM.
	The output signal plus noise just prior to base‐band filtering is the envelope (phasor sum)
	The  here is same as the  obtained using synchronous demodulator. To make a comparison with the square law demodulator, we assume
	Limiter is to suppress amplitude variation noise. Discriminator gives at output an amplitude variation according to instantaneous frequency of input. This is as shown in figures 4.1 1nd 4.2.
	Here AL is the limited amplitude of the carrier so that AL is fixed and independent of the input amplitude, and ωct + φ(t) is the instantaneous phase.

	SNR Calculation:
	Consider that the input signal to the IF carrier filter of figure 4.1 is
	The signal is s2 (t) [corresponding to v2 (t)] given by
	Figure 4.3: A Phasor diagram of the terms in above equation (4.13)
	We ignore the time-varying envelope R(t), since all time variations are removed by the limiter. Output of the limiter-band-pass filter, 2(t) =AL cos[ωct + (t)] , where AL is a constant. Assume that we are operating under the condition of high-input ...
	Output‐noise power
	Let us consider that the modulating signal m(t) is sinusoidal and produces a frequency deviation f. then the input signal si(t)
	FM is better if þ ÷ √2/3 ÷ 0.5 or more. But this comes at the cost of higher bandwidth as
	ForþFM = 2þƒM and bandwidth of AM system is þAM = 2ƒM,

	SNR Improvement: Pre‐emphasis and de‐emphasis
	Figure 4.5: Pre‐emphasis and de‐emphasis in an FM system
	The improvement in signal-to-noise ratio which results from pre-emphasis depends on the frequency dependence of the PSD of the baseband signal. Let us assume that the PDF of a typical audio signal, say music, may reasonably be represented as having a ...
	In commercial FM broadcasting f1 = 2.1 kHz, while fM may reasonably taken as = 15 kHz
	The condition of equal bandwidth requires that

	Effect of Transmitter Noise
	Figure 4.11:
	Experimentally it is determined that the FM system exhibits a threshold.
	a)
	(4.59)
	Thus PLL works as a FM demodulator. If the incoming signal is phase modulated wave, then, o (t) = i(t) = Kpm(t) and eo(t) = Kpm˙ (t)/C . In this case we need to integrate eo
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